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Solving Incomplete Market Models with Hetero Agents

• Projection
• DR2010-JEDC (Exact Aggregation/Xpa) *
• AAD2008-JEDC
• AAD2010-JEDC
• Reiter2010-JEDC

• Perturbation
• KKK2010-JEDC
• PR2006-WP

• Hybrid:
• Projection and Simulation (i.e., Krusell-Smith Algorithm)

• KS1998-JPE
• MMV2010-JEDC (KS- Stochastic Simulation). *
• Young2010-JEDC (KS- Non-Stochastic Simulation 2)

• Projection and Perturbation
• Reiter2009-JEDC*
• Winberry2018-QE*

• Continuous-time: AKMWW2018-NBER Macro Annual
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Theoretical Model: Recursive competitive equilibrium

Households:

c(ε, k;m, a)−σ = h(ε, k ;m, a) + βE [c(ε′, k ′;m′, a′)−σ(1− δ + r ′)] (1)

c(ε, k;m, a) = [(1−τ)εt+µ(1−εt)]w(m, a)+[r(m, a)+1−δ]k−k ′(ε, k;m, a)
(2)

Firms:

w = (1− α)at(
Kt

Lt
)α (3)

r = αat(
Kt

Lt
)α−1 (4)

Government:

τt =
µut
Lt

=
µ(1− Lt)

Lt
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Theoretical Model

• Aggregate states:

log(at+1) = ρalog(at) + σaωt+1, ω ∼ N(0, 1) (5)

• Idiosyncratic states: employed / unemployed:
• εt = 1, if employed;
• εt = 0, if unemployed;

• Transition probabilities (constant over time1)
e/e′ u e
u π(u|u) π(u|e)
e π(e|u) π(e|e)

• Evolution of distribution: for all measurable sets ∆k

m′(m, a) =
∑
ε̃

π(ε|ε̃)

∫
1{k ′(ε̃, k ;m, a) ∈ ∆k}m(ε̃, dk) (6)

1This implies Lt is constant over time, so is tax rate τt .
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Computational Challenges

”Infinite-dimensional Fixed Point Problem”:

c(ε, k;m, a)−σ = h(ε, k ;m, a) + βE [c(ε′, k ′;m′, a′)−σ(1− δ + r ′)]

where optimal consumption c(ε, k ;m, a) =

kr(m, a) + [(1− τ)εt + µ(1− εt)]w(m, a) + (1− δ)k − k ′(ε, k;m, a)

and m is the (joint) distribution of capital and employment status
(usually an infinite-dimensional object).
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Handle the Challenges

Individual problem:

• idiosyncratic shocks (uncertainty): large (0 or 1);

• nonlinear and high dimensional individual problem

• perturbation (local solution) probably a bad idea

• projection is needed (as in KS algorithm etc.)

Aggregate problem:

• aggregate shocks (uncertainty): relatively small (1 s.d.);

• linear or almost linear aggregate problem

• perturbation (local solution) probably works

Solution: Projection+Perturbation.
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Projection + Perturbation Algorithm

• Step 1: Approximate the model’s equilibrium objects - the
distribution, law of motion, factor prices, decision rules (often
infinite-dimensional)- using finite dimensional global approximations
w.r.t. individual state variables.

• Step 2: Compute the stationary equilibrium of the approximated
model without aggregate shocks but still with idiosyncratic shocks.

• Step 3: Compute the aggregate dynamic of the approximated model
by perturbing it around the stationary equilibrium.
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Step 1: Approximation

a. Approximate distribution of household over capital holding (k) with
gε,t(k) '

g0
ε,texp{g1

ε,t [k−m1
ε,t ]+g2

ε,t [(k−m1
ε,t)

2−m2
ε,t ]+...+g J

ε,t [(k−m1
ε,t)

J−mJ
ε,t ]}

(7)

where J is the order of approximation, g j
ε,t are parameters, mj

ε,t are
centralized moments of distribution.2

m1
ε,t =

∫
kgε,t(k)dk (8)

mj
ε,t =

∫
(k −m1

ε,t)
jgε,t(k)dk , for j=2,3,...,J. (9)

Issue: occasionally binding constraint

2In practice we approximate the integrals using Gauss-Legendre quadrature.
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Step 1: Approximation

a. (cont-) Approximate distribution of household over capital holding (k)
at the borrowing constraint (k=k).
→ The distribution of household features a positive mass at k
→ We denote the mass at constraint with productivity ε as m̂ε.
Law of motion of the mass

m̂ε,t+1 =
1

π(ε)
[
∑
ε̃

m̂ε̃,tπ(ε̃)π(ε|ε̃)1{k ′(ε̃, k) = k}+

∑
ε̃

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)

∫
1{k ′(ε̃, k) = k}gε̃,t(k)dk] (10)

where π(ε) is the mass of households with prod. ε;
gε,t(k) is the p.d.f of households with k > k as defined before.
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Step 1: Approximation

b. Approximate law of motion of distribution by law of motion of
moments.3

m1
ε,t+1 =

1

π(ε)
[
∑
ε̃

m̂ε̃,tπ(ε̃)π(ε|ε̃)k ′(ε̃, k)+

∑
ε̃

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)

∫
k ′(ε̃, k)gε̃,t(k)dk] (11)

mj
ε,t+1 =

1

π(ε)
[
∑
ε̃

m̂ε̃,tπ(ε̃)π(ε|ε̃)[k ′(ε̃, k)−m1
ε,t+1]j+

∑
ε̃

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)

∫
[k ′(ε̃, k)−m1

ε,t+1]jgε̃,t(k)dk] (12)

3In practice we approximate the integrals using Gauss-Legendre quadrature.
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Step 1: Approximation

c. Compute aggregate capital stock from approximated distribution:

Kt =
∑
ε

π(ε)
J∑

j=1

ωjkjgε,t(kj)

And factor prices:

w = (1− α)at(
Kt

Lt
)α (13)

r = αat(
Kt

Lt
)α−1 (14)
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Step 1: Approximation

d. Approximate decision rules:
Approximate Conditional Expectation with Chebyshev Polynomials:

E [β(1− δ + r ′)c(ε′, k ′;m′, a′)−σ] ' exp{
I∑

i=1

θεi,tTiξ(k)}

Optimal equation:

c(ε, k ;m, a)−σ = h(ε, k ;m, a) + exp{
I∑

i=1

θεi,tTiξ(k)} (15)

To get the parameters, we approximate households’ optimality condition
using collocation:

exp{
I∑

i=1

θεi,tTiξ(k)} = E [β(1− δ + r ′)ĉ(ε′, k̂ ′;m′, a′)−σ] (16)
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Step 1: Approximate Model

Approximate model is characterized by:

• Aggregate Law of motion (at): Equation (5)

• Distribution LM: [Equation (6) →] Equation (11) and (12)

• Decision rule: [Equation (1) →] Equation (15) or (16)

• Budget constraint: Equation (2)

• Factor prices: [Equation (3) and (4) →] Equation (13) and (14)

• Approximate Moment: Equation (8) and (9)

Define a residual function based on the approximate model:

Et [f (yt , yt+1, xt , xt+1;χ)] = 0 (17)
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Step 2: Stationary Equilibrium

The stationary equilibrium is a system of (nonlinear) equations:

f (y∗, y∗, x∗, x∗; 0) = 0 (18)

(This can be very difficult to solve due to the large size!)
Author’s strategy: write s.s. in terms of K.

• Compute factor prices: r and w. ( by assumption L is constant)

• Solve the approximated expectation term (θ)

• Solve for moments m and parameters g.

• update aggregate capital K’ from equation:

K ′ =
∑
ε

π(ε)
J∑

j=1

ωjk
′
j gε(kj) (19)

• return K’-K and solve for a zero of this equation
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Step 3: Perturbation

• Import the model to Dynare 4, and Dynare will:

• differentiate these equations;

• evaluate them at steady state;

• solve the resulting system at first order;

• perform default analysis.

4This step is not trivial. Dynare does not accept matrix expressions used heavily in
the matlab codes to solve steady state. We need to re-write teh matrix expressions as
loops over scalar variables using Dynare’s macro-processor.
For details on macro-processor, see: http://www.dynare.org/manual/index37.html ; or
at: http://www.dynare.org/DynareShanghai2013/macroprocessor.pdf
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Reference and Further Reading

Reference

• Winberry, T. (Forthcoming). A toolbox for solving and estimating
heterogeneous agent macro models. Quantitative Economics.

which partly builds upon the algorithm in:

• Reiter, M. (2009). Solving heterogeneous-agent models by
projection and perturbation. Journal of Economic Dynamics and
Control, 33(3), 649-665.

• Algan, Y., Allais, O., Den Haan, W. J. (2010). Solving the
incomplete markets model with aggregate uncertainty using
parameterized cross-sectional distributions. Journal of Economic
Dynamics and Control, 34(1), 59-68.
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Reference and Further Reading

Further Reading for P+P Algorithm/Application

• (review) Terry, S. J. (2017). Alternative methods for solving
heterogeneous firm models. Journal of Money, Credit and Banking,
49(6), 1081-1111.

• (review) Algan, Y., Allais, O., Den Haan, W. J., Rendahl, P.
(2014). Solving and simulating models with heterogeneous agents
and aggregate uncertainty. In Handbook of Computational
Economics (Vol. 3, pp. 277-324). Elsevier.

• (application) Khan, A., Thomas, J. K. (2008). Idiosyncratic shocks
and the role of nonconvexities in plant and aggregate investment
dynamics. Econometrica, 76(2), 395-436.
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