Week 3:
 Stationary Equilibrium of HA Model

Computation Study Group

Peking University, HSBC Business School
Current slides are mainly based on Prof.Jinhui Bai's lecture notes. Special thanks to Prof.Jinhui Bai!

$$
\text { June 30, } 2021
$$

Aiyagari (1994) Model

- A household saving problem

$$
V(k, \epsilon)=\max _{c, a^{\prime}}\left\{\frac{c^{1-\sigma}}{1-\sigma}+\beta \mathrm{EV}\left(k^{\prime}, \epsilon^{\prime}\right)\right\}
$$

subject to

$$
\begin{aligned}
c+k^{\prime} & =(1+r-\delta) k+w \epsilon \bar{I} \\
c & \geq 0, k^{\prime} \geq-\phi
\end{aligned}
$$

ϵ is idiosyncratic labor productivity shock.

- Firm's problem

$$
\max =K^{\alpha} N^{1-\alpha}-r K-w N
$$

For now, no aggregate TFP shock.

Stationary Recursive Competitive Equilibrium

A stationary recursive competitive equilibrium is a set of functions, $v(k, \epsilon)$ and $g(k, \epsilon)$, a set of prices and quantities (r, w, K, N), and a stationary distribution $\lambda(k, \epsilon)$ such that

- Given $(r, w), v(k, \epsilon)$ and $g(k, \epsilon)$ solve the household's dynamic programming problem.
- Prices are competitively determined:

$$
w=(1-\alpha)\left(\frac{K}{N}\right)^{\alpha}, \quad r=\alpha\left(\frac{K}{N}\right)^{\alpha-1}-\delta
$$

- Market clears:

$$
K=\sum_{\epsilon} \sum_{k} \lambda(k, \epsilon) g(k, \epsilon), \quad N=\sum_{\epsilon} \sum_{k} \lambda(k, \epsilon) \epsilon \bar{l}
$$

- $\lambda(k, \epsilon)$ is a stationary distribution from $g(k, \epsilon)$.

Some Math Preparation

Some Key Elements in Numerical Computation

- Discretization
- Function Approximation
- Optimization
- Root Finding / Equation Solving

Function Approximation

How to approximate a continuous function from discrete function values?

- We can use piece-wise polynomial approximation
- Idea: Construct a low-order polynomial for every two neighboring grid points.
- We introduce two methods
- Cubic Spline
- Piecewise Cubic Hermite Interpolation Polynomial (PCHIP)

Function Approximation

Cubic Spline: MATLAB function "spline"

- A Cubic Spline is a set of piecewise cubic polynomials $\widehat{f}(x)$ for each $n=1,2, \ldots, N-1$ and $x \in\left[x_{n}, x_{n+1}\right]$

$$
\widehat{f}_{n}(x)=c_{n 0}+c_{n 1}\left(x-x_{n}\right)+c_{n 2}\left(x-x_{n}\right)^{2}+c_{n 3}\left(x-x_{n}\right)^{3}
$$

such that

- Function value is continuous for all nodes:

$$
\widehat{f}_{n}\left(x_{n}\right)=y_{n} \text { and } \widehat{f}_{n+1}\left(x_{n+1}\right)=y_{n+1} \text { for all } n=1,2, \ldots, N-1
$$

- First-order derivative is continuous for each interior node: $\widehat{f}_{n}^{\prime}\left(x_{n}\right)=\widehat{f}_{n+1}^{\prime}\left(x_{n}\right)$ for $2 \leq n \leq N-1$
- Second-order derivative is continuous for each interior node: $\widehat{f}_{n}^{\prime \prime}\left(x_{n}\right)=\widehat{f}_{n+1}^{\prime \prime}\left(x_{n}\right)$ for $2 \leq n \leq N-1$
- How can we pin down the coefficients?
- We have $4(N-1)$ unknown parameters, but only $2(N-1)+2(N-2)=4 N-6$ restrictions.
- Need two more conditions, for example
- "not-a-knot": $\widehat{f}_{1}^{\prime \prime \prime}\left(x_{2}\right)=\widehat{f}_{2}^{\prime \prime \prime}\left(x_{2}\right), \widehat{f}_{N-2}^{\prime \prime \prime}\left(x_{N-1}\right)=\widehat{f}_{N-1}^{\prime \prime \prime}\left(x_{N-1}\right)$
- Requirements on ${\widehat{f_{1}^{\prime}}}^{\prime}\left(x_{1}\right)$ and $\widehat{f}_{N-1}^{\prime}\left(x_{N}\right)$.

Function Approximation

Piecewise Cubic Hermite Interpolation Polynomial: MATLAB function "pchip"

- Suppose on each node, we have data on both function value and first derivative value: $\left(x_{n}, y_{n}, y_{n}^{\prime}\right)_{n=1}^{N}$, where

$$
\begin{aligned}
& y_{n}=f\left(x_{n}\right) \\
& y_{n}^{\prime}=f^{\prime}\left(x_{n}\right)
\end{aligned}
$$

- Then on each interval $\left[x_{n}, x_{n+1}\right.$], the data uniquely determines a cubic polynomial

$$
\widehat{f}_{n}(x)=c_{n 0}+c_{n 1}\left(x-x_{n}\right)+c_{n 2}\left(x-x_{n}\right)^{2}+c_{n 3}\left(x-x_{n}\right)^{3}
$$

for $x \in\left[x_{n}, x_{n+1}\right]$ through four conditions:

$$
\begin{aligned}
y_{n} & =\widehat{f}_{n}\left(x_{n}\right), y_{n+1}=\widehat{f}_{n+1}\left(x_{n+1}\right), \\
y_{n}^{\prime} & =f \widehat{f}_{n}^{\prime}\left(x_{n}\right), y_{n+1}^{\prime}=\widehat{f}_{n}^{\prime}\left(x_{n+1}\right)
\end{aligned}
$$

- In reality, we usually don't have data on derivatives. MATLAB function "pchip" approximate it by average of two slopes.

Function Approximation

Comparison between Interpolation Methods

- Cubic spline is more smooth. We can easily calculate first and second order derivatives from it.
- PCHIP is more shape-preserving. It can better preserve the shape of a kinked line (for example, the policy function in the Aiyagari model).

Figure: Comparison between Interpolation Methods

Root Finding

How to find root(s) for a non-linear equation $f(x)=0$?

- Bracketing Method
- Step 1: Find an interval (bracket) (a, b) such that $f(a) f(b)<0$.
- Step 2: Find a point x inside the bracket. If $f(a) f(x)>0$, let $a=x$; if $f(b) f(x)>0$, let $b=x$
- Step 3: Redo Step 2 on new (a, b)
- Step 4: Break when $|b-a|$ is sufficiently small. Then x is the root we find.

Figure: Bracketing Method

Root Finding

Now the question is: how to find such a x inside the bracket (a, b) ?

- A naive way: bisection.
- More efficient way: by linear approximation.

In Step k, approximate $f(x)$ around last Step's x_{k-1} :

$$
\begin{gathered}
f(x) \approx f\left(x_{k-1}\right)+A_{k}\left(x-x_{k-1}\right) \\
f\left(x_{k-1}\right)+A_{k}\left(x-x_{k-1}\right)=0 \Rightarrow x_{k}=x_{k-1}-A_{k}^{-1} f\left(x_{k-1}\right)
\end{gathered}
$$

- How to choose A_{k} ?
- Fixed point iteration: $A_{k}=1$.
- Newton's method: $A_{k}=f^{\prime}\left(x_{k-1}\right)$.

Root Finding

- Fixed point iteration

$$
x_{k}=x_{k-1}-f\left(x_{k-1}\right)
$$

- Newton's method

$$
x_{k}=x_{k-1}-f\left(x_{k-1}\right)^{-1} f\left(x_{k-1}\right)
$$

Figure: Fixed Point Iteration

Figure: Newton's Method

Root Finding

MATLAB built-in functions for equation solving

- fzero: solves one-dimensional non-linear equation
- fsolve: solves multi-dimensional non-linear equations
- Note: The idea of N-D non-linear equation solving is different from 1-D case: it actually tries to solve the global minimum of a quadratic function and uses function optimization. Hence, directly uses optimization algorithm if you can.
- Recommend you to read MATLAB documentation.

Optimization

How to find local minimum for a function $f(x)$? Idea:

- We still use Bracketing Method: shrink bracket $[a, b]$ until we find a local minimum.
- A simple way: Bisection section search.
- More efficient way: by quadratic approximation.

$$
\widehat{f}(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

If $c_{2}>0$, a candidate iteration point is given by the minimizer

$$
\arg \min \widehat{f}(x)=-\frac{c_{1}}{2 c_{2}}
$$

If $c_{2}<0$ or $\arg \min \widehat{f}(x) \notin[a, b]$, update by safe methods like bisection search.

Optimization

How to solve coefficient c_{0}, c_{1} and c_{2} in $\widehat{f}(x)$?

- Brent's Method: Use three function values.

MATLAB function: fminbnd

- Quasi-Newton Method: Use one function value and two first derivatives.

$$
\widehat{f}(x)=f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{1}{2} A^{(k)}\left(x-x^{(k)}\right)^{2}
$$

where

$$
A^{(k)}=\frac{f^{\prime}\left(x^{(k)}\right)-f^{\prime}\left(x^{(k-1)}\right)}{x^{(k)}-x^{(k-1)}}
$$

MATLAB function: fmincon

- Newton Method: Use one function value, one first derivative and one second derivative.

$$
\widehat{f}(x)=f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)^{2}
$$

MATLAB function: fmincon

Individual household's dynamic programming problem

Solution Methods: An Overview

- Bellman Equation Methods
- Value function iteration
- Value function iteration with Howard improvement
- Euler Equation Methods
- Euler equation iteration / Policy function iteration
- Euler equation perturbation method (Dynare)

Bellman Equation Methods

- Bellman Equation:

$$
V(k, \epsilon)=\max _{k^{\prime}}\left\{\frac{\left((1+r-\delta) k+w \epsilon-k^{\prime}\right)^{1-\sigma}}{1-\sigma}+\beta E V\left(k^{\prime}, \epsilon^{\prime}\right)\right\}
$$

subject to

$$
-\phi \leq k^{\prime} \leq(1+r-\delta) k+w \epsilon
$$

- Our goal:

Solve value function $V(k, \epsilon)$ and policy function $k^{\prime}=G(k, \epsilon)$.

Discretization of State Variables

We discretize the domain of functions $V(k, s)$ and $G(a, s)$. That is, we discretize state variables k and s.

- Discretization of $k: k$ and k^{\prime} lies on a N by 1 grid with

$$
\begin{aligned}
& n \in \mathcal{N}=\{1,2, \ldots, N\} \\
& k \in \mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}
\end{aligned}
$$

- Discretization of $\epsilon: \epsilon$ follows S-state Markov Chain with state space

$$
\begin{gathered}
s \in \mathcal{S}=\{1,2, \ldots, S\} \\
\epsilon \in \mathcal{E}=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S}\right\}
\end{gathered}
$$

and a S by S Transition Probability Matrix \mathcal{P}

$$
\mathcal{P}\left(s, s^{\prime}\right)=\operatorname{Pr}\left(\epsilon_{t+1}=\epsilon_{s^{\prime}} \mid \epsilon_{t}=\epsilon_{s}\right)
$$

Note: methods to discretize an $\operatorname{AR}(1)$ process into \mathcal{P} (1) Rouwenhorst (1995); (2) Tauchen (1991).

Discretization of State Variables

Now the Bellman Equation becomes
$V\left(k_{n}, \epsilon_{s}\right)=\max _{k^{\prime}}\left\{\frac{\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{1-\sigma}}{1-\sigma}+\beta \sum_{s^{\prime}=1}^{S} \mathcal{P}\left(s, s^{\prime}\right) V\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right\}$
subject to

$$
\begin{gathered}
-\phi \leq k^{\prime} \leq(1+r-\delta) k_{n}+w \epsilon_{s} \\
k^{\prime} \in \mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}
\end{gathered}
$$

- Our goal:

Solve value function $V\left(k_{n}, \epsilon_{s}\right)$ and policy function $k^{\prime}=G\left(k_{n}, \epsilon_{s}\right)$ for

$$
\begin{aligned}
n \in \mathcal{N} & =\{1,2, \ldots, N\} \\
s \in \mathcal{S} & =\{1,2, \ldots, S\}
\end{aligned}
$$

Value Function Iteration: Idea

- We are essentially solving a root finding problem:

$$
\begin{gathered}
V=T V \\
f(V)=V-T V=0
\end{gathered}
$$

- We can solve it by fixed point iteration
- Step 0: Choose an initial value function V.
- Step 1: Obtain new value function V^{\prime} by

$$
V^{\prime}=V-f(V)=V-(V-T V)=T V
$$

- Step 2: Check if $\left\|V^{\prime}-V\right\|<t_{v}$, where t_{v} is a predetermined tolerance level. If not, let $V=V^{\prime}$, and redo Step 1-2. Break if $\left\|V^{\prime}-V\right\|<t_{v}$ or number of iteration $>$ Maxlter $_{v}$
- It is value function iteration.

Value Function Iteration

Then how can we perform this iteration? Here we use a continuous-state method, by using function interpolation.

- Begin with old value function

$$
V\left(k_{n}, \epsilon_{s}\right)(n \in \mathcal{N}=\{1,2, \ldots, N\}, s \in \mathcal{S}=\{1,2, \ldots, S\})
$$

- Our goal: obtain new value function on each grid point $\left(k_{n}, \epsilon_{s}\right)$.
- Interpolation
- Purpose:

$$
\begin{aligned}
& V\left(k_{n}, \epsilon_{s}\right), n \in \mathcal{N}=\{1,2, \ldots, N\}, s \in \mathcal{S}=\{1,2, \ldots, S\} \rightarrow \\
& V\left(k, \epsilon_{s}\right), k \in\left[k_{1}, k_{N}\right], s \in \mathcal{S}=\{1,2, \ldots, S\}
\end{aligned}
$$

- Cubic spline: vfn = spline(agrid,v.');
- Evaluation: ppval(vfn,aprime);

Value Function Iteration

- Maximization

$$
V\left(k_{n}, \epsilon_{s}\right)=\max _{k^{\prime}}\left\{\frac{\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{1-\sigma}}{1-\sigma}+\beta \sum_{s^{\prime}=1}^{s} \mathcal{P}\left(s, s^{\prime}\right) V\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right\}
$$

subject to

$$
k^{\prime} \in\left[\max \left\{-\phi, k_{1}\right\}, \min \left\{(1+r-\delta) k_{n}+w \epsilon_{s}, k_{N}\right\}\right]
$$

- Constrained Optimization MATLAB built-in functions: fminbnd, fmincon.
- We obtain
(1) new value function $V^{\prime}\left(k_{n}, \epsilon_{s}\right)$
(2) policy function $k^{\prime}=g\left(k_{n}, \epsilon_{s}\right)$

Howard Improvement: Idea

- In value function iteration, we have a byproduct: policy function $k^{\prime}=g\left(k_{n}, \epsilon_{s}\right)$.
- But in previous value function iteration, we completely ignore the information in g.
- Now, how about utilizing the information in g ? An idea: if $g\left(k_{n}, \epsilon_{s}\right)$ is the true policy function, then we have

$$
V\left(k_{n}, \epsilon_{s}\right)=\frac{\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{1-\sigma}}{1-\sigma}+\beta \sum_{s^{\prime}=1}^{S} \mathcal{P}\left(s, s^{\prime}\right) V\left(k^{\prime}, \epsilon_{s^{\prime}}\right)
$$

Then, given
$k^{\prime}=g\left(k_{n}, \epsilon_{s}\right),(n \in \mathcal{N}=\{1,2, \ldots, N\}, s \in \mathcal{S}=\{1,2, \ldots, S\})$, we can solve for $V\left(k_{n}, \epsilon_{s}\right)$.

Howard Improvement

But how can we solve for $V\left(k_{n}, \epsilon_{s}\right)$?
Again, it is an equation solving problem - we can use fixed point iteration!

- Step 0: Choose an initial value function $V\left(k_{n}, \epsilon_{s}\right)$.
- Step 1: Obtain a new value function $V^{\prime}\left(k_{n}, \epsilon_{s}\right)$ by

$$
V^{\prime}\left(k_{n}, \epsilon_{s}\right)=\frac{\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{1-\sigma}}{1-\sigma}+\beta \sum_{s^{\prime}=1}^{S} \mathcal{P}\left(s, s^{\prime}\right) V\left(k^{\prime}, \epsilon_{s^{\prime}}\right)
$$

- Step 2: Check if $\left\|V^{\prime}-V\right\|<t_{h}$. If not, let $V=V^{\prime}$ and redo Step 1-2.
Break if $\left\|V^{\prime}-V\right\|<t_{h}$ or number of iteration $>$ Maxlter $_{h}$

Value Function Iteration + Howard Improvement

Now we combine VFI and Howard Improvement.

- Step 0: Initialization
(1) Set initial value function $V^{0}\left(k_{n}, \epsilon_{s}\right)$ and policy function $G^{0}\left(k_{n}, \epsilon_{s}\right)$.
(2) Set tolerance level for value function, policy function and Howard Improvement step: $t_{v}, t_{p}, t_{h p}$, and t_{h}.
(3) Set maximum iteration number K_{v}, and J_{h}.
- Step 1: Value function iteration.

In iteration $k=1, \ldots, K_{v}$, use continuous state VFI to calculate value function \hat{V}^{k} and policy function G^{k}.

- Step 2: Check. If $\left\|V^{k}-V^{k-1}\right\|<t_{v}$ and $\left\|G^{k}-G^{k-1}\right\|<t_{p}$, declare success with the solution $V=V^{k-1}$ and $G=G^{k}$. Otherwise, go to Step 3.

Value Function Iteration + Howard Improvement

- Step 3: Update.

If $\left\|G^{k}-G^{k-1}\right\|<t_{h p}$, then update V^{k} by Howard Improvement.

- Step 3.0 Let \hat{V}^{k} be initial value in Howard Improvement:

$$
V_{h}^{0}=\hat{V}^{k}
$$

- Step 3.1 For iteration $j=1, \ldots, J_{h}$,

$$
\begin{aligned}
V_{h}^{j}\left(k_{n}, \epsilon_{s}\right) & =\frac{\left((1+r-\delta) k_{n}+w \epsilon_{s}-G^{k}\left(k_{n}, \epsilon_{s}\right)\right)^{1-\sigma}}{1-\sigma} \\
+ & \beta \sum_{s^{\prime}=1}^{s} \mathcal{P}\left(s, s^{\prime}\right) V_{h}^{j-1}\left(G^{k}\left(k_{n}, \epsilon_{s}\right), \epsilon_{s^{\prime}}\right)
\end{aligned}
$$

- Step 3.2 Check: if $\left\|V^{j}-V^{j-1}\right\|<t_{v}$, break; otherwise, back to Step 3.1.
Update V^{k} by $V^{k}=V_{h}$, which is obtained in the Howard Improvement process.
If $\left\|G^{k}-G^{k-1}\right\| \geq t_{h p}$, then update V^{k} by original VFI value: $V^{k}=\hat{V}^{k}$.

Euler Equation Methods

Euler equation in the Aiyagari Model (suppose interior solution)

$$
\begin{gathered}
c^{-\sigma}=\beta(1+r) E c^{\prime-\sigma} \\
\left((1+r-\delta) k+w \epsilon-k^{\prime}\right)^{-\sigma}=\beta(1+r) E\left((1+r-\delta) k^{\prime}+w \epsilon^{\prime}-k^{\prime \prime}\right)^{-\sigma} \\
((1+r-\delta) k+w \epsilon-g(k, \epsilon))^{-\sigma}=\beta(1+r) E\left((1+r-\delta) g(k, \epsilon)+w \epsilon^{\prime}-g\left(k^{\prime}, \epsilon^{\prime}\right)\right)^{-\sigma}
\end{gathered}
$$

where g is the policy function: $k^{\prime}=g(k, \epsilon)$ and $k^{\prime \prime}=g\left(k^{\prime}, \epsilon^{\prime}\right)$.

- Euler equation gives a functional equation of policy function g : again, an equation-solving problem.
- Again, we can use fixed point iteration. Given a policy function \tilde{g}, we can solve for a new policy function g by solving the root of equation

$$
((1+r-\delta) k+w \epsilon-g(k, \epsilon))^{-\sigma}=\beta(1+r) E\left((1+r-\delta) g(k, \epsilon)+w \epsilon^{\prime}-\tilde{g}\left(k^{\prime}, \epsilon^{\prime}\right)\right)^{-\sigma}
$$

Iterate until $\|\tilde{g}-g\|<t_{p}$.

Policy Function Iteration

Recall that in practice, policy function is on discrete grids:

$$
k^{\prime}=g\left(k_{n}, \epsilon_{s}\right),(n \in \mathcal{N}=\{1,2, \ldots, N\}, s \in \mathcal{S}=\{1,2, \ldots, S\})
$$

Then there are two types on policy function iteration methods:

- Exogenous Grid Method
- Endogenous Grid Method

Policy Function Iteration: Exogenous Grid Method

Euler Equation:
$\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{-\sigma}=\beta(1+r) E\left((1+r-\delta) k^{\prime}+w \epsilon_{s^{\prime}}-g\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right)^{-\sigma}$

- Step 0: Choose an initial policy function $g\left(k_{n}, \epsilon_{s^{\prime}}\right)$ $(n \in \mathcal{N}=\{1,2, \ldots, N\}, s \in \mathcal{S}=\{1,2, \ldots, S\})$.
- Step 1: Use interpolation to approximate continuous policy functions $\tilde{g}\left(k^{\prime}, \epsilon_{s^{\prime}}\right), s \in \mathcal{S}=\{1,2, \ldots, S\}$.
- Step 2: For each n and s, solve new policy function $k^{\prime}=g^{\prime}\left(k_{n}, \epsilon_{s}\right)$ from Euler Equation.
- Iterate until the convergent of policy function g on grid points.

Step 2 is time-consuming, since it involves solving a non-linear equation.

Policy Function Iteration: Endogenous Grid Method

Euler Equation:
$\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{-\sigma}=\beta(1+r) E\left((1+r-\delta) k^{\prime}+w \epsilon_{s^{\prime}}-g\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right)^{-\sigma}$

- Step 0: Choose an initial policy function $g\left(k_{n}, \epsilon_{s^{\prime}}\right)$.
- Step 1: Endogenous Grid. For each today's $\epsilon=\epsilon_{s}$ and each future $k^{\prime}=k_{n^{\prime}}$ and $k^{\prime \prime}=g\left(k_{n^{\prime}}, \epsilon_{s^{\prime}}\right)$, solve today's k from Euler Equation:
$\widehat{k}_{n^{\prime} s}=\frac{R H S^{-\frac{1}{\sigma}}+k_{n^{\prime}}-w \epsilon_{s}}{1+r-\delta}, R H S=\beta(1+r) E\left((1+r-\delta) k_{n^{\prime}}+w \epsilon_{s^{\prime}}-g\left(k_{n^{\prime}}, \epsilon_{s^{\prime}}\right)\right)^{-\sigma}$
- Step 2: Function Approximation and Interpolation

For each today's $\epsilon=\epsilon_{s}$, now we have $\left(\widehat{k}_{n^{\prime} s}, k_{n^{\prime}}\right)_{n^{\prime}=1}^{N}$. Use interpolation to obtain a continuous policy function $\tilde{g}\left(k, \epsilon_{s}\right)$. Evaluate \tilde{g} at exogenous grid point $\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}$ to get new policy function $g^{\prime}\left(k_{n}, \epsilon_{s}\right)$.

- Iterate until the convergent of policy function g on grid points.

Endogenous Grid Method: Corner Solutions

Considering the possibility of corner solutions, Euler Equation becomes
$\left((1+r-\delta) k_{n}+w \epsilon_{s}-k^{\prime}\right)^{-\sigma} \geq \beta(1+r) E\left((1+r-\delta) k^{\prime}+w \epsilon_{s^{\prime}}-g\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right)^{-\sigma}$
" $>$ " implies $k^{\prime}=0$ while $k^{\prime}>0$ implies " $=$ ".
How to deal with it?

- Add \& Drop

Endogenous Grid Method: Corner Solutions

If $\widehat{k}_{n^{\prime} s}<\phi$, discard $\left(\widehat{k}_{n^{\prime} s}, k_{n^{\prime}}\right)$ pair. For $k^{\prime}=k_{1}=\phi$, add all grid point pair $\left(k_{n}, \phi\right)$ to endogenous grids, where $k_{n} \leq \widehat{k}_{1 s}$.

Stationary Distribution

Evolution of Probability Distribution

- Evolution of an individual's state $\left(k, \epsilon_{s}\right)$

- With a continuous $k,\left(k, \epsilon_{s}\right)$ follows a continuous-state Markov process with transition prob density function given by

$$
Q\left(\left(k, \epsilon_{s}\right),\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right)=\mathcal{P}\left(s, s^{\prime}\right) \cdot \mathcal{I}\left(k^{\prime}=g\left(k, \epsilon_{s}\right)\right)
$$

- Evolution of the distribution The distribution over $\left(k, \epsilon_{s}\right), \lambda\left(k, \epsilon_{s}\right)$, evolves according to

$$
\lambda_{t+1}\left(k^{\prime}, \epsilon_{s^{\prime}}\right)=\sum_{s} \int Q\left(\left(k, \epsilon_{s}\right),\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right) d \lambda_{t}\left(k, \epsilon_{s}\right),
$$

- Stationary distribution is defined as $\lambda\left(k, \epsilon_{s}\right)$ such that

$$
\lambda\left(k^{\prime}, \epsilon_{s^{\prime}}\right)=\sum_{s} \int Q\left(\left(k, \epsilon_{s}\right),\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right) d \lambda\left(k, \epsilon_{s}\right)
$$

Calculation of Stationary Distribution

Stationary distribution

$$
\lambda\left(k^{\prime}, \epsilon_{s^{\prime}}\right)=\sum_{s} \int Q\left(\left(k, \epsilon_{s}\right),\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right) d \lambda\left(k, \epsilon_{s}\right)
$$

- Our goal is to numerically calculate the stationary distribution.
- Generally, there are two methods.
- Discretization Method

Approximate transition probability density function $Q\left(\left(k, \epsilon_{s}\right),\left(k^{\prime}, \epsilon_{s^{\prime}}\right)\right)$ by a Markov transition matrix Q.
Then we can calculate stationary distribution by this Markov transition matrix Q.

- Stochastic Simulation Method Simulates a large number of households over a long period of time. Then we can finally obtain the stationary distribution.

Stationary Distribution: Discretization Method

Idea:

- First, imagine an ideal case: policy function $k^{\prime}=g\left(k_{n}, \epsilon_{s}\right)$ happens to lie on the girds $\mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}$.
That is, for any k^{\prime}, there exists a $n^{\prime} \in \mathcal{N}=\{1,2, \ldots, N\}$, such that $k^{\prime}=k_{n^{\prime}}$.
- Then things become easy. Q becomes a $N S \times N S$ transition matrix:

$$
Q\left((n, s),\left(n^{\prime}, s^{\prime}\right)\right)= \begin{cases}\mathcal{P}\left(s, s^{\prime}\right) & \text { if } n^{\prime}=g(n, s) \\ 0 & \text { if } n^{\prime} \neq g(n, s)\end{cases}
$$

- But we know in reality, it is almost impossible that k^{\prime} exactly lies on the grid points.
- Then, one feasible way is that we assign probability values to gird points based on their distance to k^{\prime}.

Stationary Distribution: Discretization Method

Eric Young's Method (2010, JEDC) to obtain a $N S \times N S$ transition matrix Q

- For each $\left(k_{n}, \epsilon_{s}\right)$, we can calculate $Q\left((n, s),\left(n^{\prime}, s^{\prime}\right)\right)$ $\left(n^{\prime} \in \mathcal{N}=\{1,2, \ldots, N\}, s^{\prime} \in \mathcal{S}=\{1,2, \ldots, S\}\right)$
by the following way:

$$
\begin{aligned}
& Q\left((n, s),\left(n^{\prime}, s^{\prime}\right)\right)=\left\{\begin{array}{l}
0, n^{\prime}=1, \ldots, n^{*}-1 \\
\frac{k_{n^{*}+1}-k^{\prime}}{k_{n^{*}+1}-k_{n}} P\left(s, s^{\prime}\right), n^{\prime}=n^{*} \\
\frac{k^{\prime}-k_{n}}{k_{n}} P\left(s, s^{\prime}\right), n^{\prime}=n^{*}+1 \\
0, n^{*}=n^{*}+2, \ldots, N
\end{array}\right.
\end{aligned}
$$

Stationary Distribution: Discretization Method

Calculate stationary distribution from transition matrix Q.

- Probability Evolution

$$
\begin{gathered}
\lambda_{t}=\lambda_{t}\left(k_{n}, \epsilon_{s}\right) \\
\lambda_{t+1}=Q^{T} \lambda_{t}
\end{gathered}
$$

- Stationary Distribution

$$
\lambda=Q^{T} \lambda
$$

- Two methods
- Method of eigenvalue and eigenvector λ is the eigenvector which corresponds to eigen value 1 of matrix Q^{T}.
- Iteration

Again, it is a equation solving problem. Just use fixed point iteration.

Stationary Distribution: Stochastic Simulation

- Step 0

Fix I agents, T periods, and an initial distribution $\left(k_{0}^{i}, s_{0}^{i}\right)_{i=1}^{I}$.

- Step 1

In $0 \leq t \leq T-1$, use the policy function $k^{\prime}=g(k, s)$ to calculate $\left(k_{t+1}^{i}\right)_{i=1}^{\prime}$ for each $i \in I$, i.e.

$$
k_{t+1}^{i}=g\left(k_{t}^{i}, s_{t}^{i}\right)
$$

and use transition matrix $\mathcal{P}\left(s, s^{\prime}\right)$ of shock s and a random number generator to generate $\left(s_{t+1}^{i}\right)_{i=1}^{\prime}$

- Step 2

Collect the simulated panel data with $(T+1)$ periods and $/$ households, $\left(k_{t}^{i}, s_{t}^{i}\right)_{i=1, t=0}^{1, T}$.

- Step 3

If the change in distributions is small between $T-1$ and T, stop. Otherwise, pick a larger T and go back to Step 0 .

Solve Equilibrium

Capital Market Clearing Condition

- Capital demand from firms: K
- Capital supply from household:

$$
\sum_{s=1}^{S} \sum_{n=1}^{N} \lambda\left(k_{n}, \epsilon_{s}\right) g\left(k_{n}, \epsilon_{s}\right)
$$

or equivalently

$$
\sum_{n=1}^{N}\left(\sum_{s=1}^{S} \lambda\left(k_{n}, \epsilon_{s}\right)\right) k_{n}
$$

- Market clears:

$$
K=\sum_{s=1}^{S} \sum_{n=1}^{N} \lambda\left(k_{n}, \epsilon_{s}\right) g\left(k_{n}, \epsilon_{s}\right)=\sum_{n=1}^{N}\left(\sum_{s=1}^{S} \lambda\left(k_{n}, \epsilon_{s}\right)\right) k_{n}
$$

Equilibrium Conditions

Recall our equilibrium conditions.

- Given $(K, N),(w, r)$ is determined competitively by

$$
w=(1-\alpha)\left(\frac{K}{N}\right)^{\alpha}, \quad r=\alpha\left(\frac{K}{N}\right)^{\alpha-1}-\delta
$$

- Given ($r, w), g(k, \epsilon)$ is the policy function from household's dynamic programming problem.
- Given policy function $g(k, \epsilon)$ and transition matrix $P, \lambda(k, \epsilon)$ is the stationary distribution.
- Market clearing condition for K and N :
$K=\sum_{s=1}^{S} \sum_{n=1}^{N} \lambda\left(k_{n}, \epsilon_{s}\right) g\left(k_{n}, \epsilon_{s}\right), \quad N=\sum_{s=1}^{S} \sum_{n=1}^{N} \lambda\left(k, \epsilon_{s}\right) \epsilon_{s} \bar{l}=\sum_{s=1}^{S} \mu\left(\epsilon_{s}\right) \epsilon_{s} \bar{\jmath}$
where μ is the invariant distribution of labor productivity shock, given by $P^{-1} \mu=\mu$.

Equilibrium Conditions

We know in this model, N is exogenously determined by P and \bar{l}. Then equilibrium conditions can be summarized as a equation of $K: f(K)=0$, where function value $f(K)$ is defined by the following procedure.

- Step 1: Given $N=\sum_{s=1}^{S} \mu\left(\epsilon_{s}\right) \epsilon_{s} \bar{T}$ and K , solve (w, r) by $w=(1-\alpha)\left(\frac{K}{N}\right)^{\alpha}, \quad r=\alpha\left(\frac{K}{N}\right)^{\alpha-1}-\delta$
- Step 2: Given (r, w), solve a DP problem to obtain policy function $g(k, \epsilon)$.
- Step 3: Given policy function $g(k, \epsilon)$ and transition matrix P, solve the stationary distribution $\lambda(k, \epsilon)$.
- Step 4: From $\lambda(k, \epsilon)$ and $g\left(k_{n}, \epsilon_{s}\right)$, calculate capital supply

$$
K^{S}=\sum_{s=1}^{S} \sum_{n=1}^{N} \lambda\left(k_{n}, \epsilon_{s}\right) g\left(k_{n}, \epsilon_{s}\right)
$$

- Step 5: Define $f(K)=K-K^{S}$, which can be interpreted as excess demand for capital
Hence, by market clear condition, excess demand is zero: $f(K)=0$.

Solve for Equilibrium

Again, we have an equation solving problem. Apply equation solving methods to solve the equilibrium.
For example: A Dampened Fixed Point Iteration.
Procedure:

- Step 0: Choose an initial conjecture for capital demand $K^{0}>0$, a stopping criterion $\varepsilon>0$, and a parameter $\gamma \in(0,1]$.
- Step 1. In Iteration $0 \leq j \leq J$, start with K^{j} and compute r^{j} and w^{j} from pricing functions.
- Step 2. Given $\left(r^{j}, w^{j}\right)$, compute the household problem to get $g^{j}(k, s)$ and associated stationary distribution $\lambda^{j}(k, s)$.
- Step 3. Calculate capital supply $\widehat{K}^{j}=\sum_{k, s} \lambda^{j}(k, s) k$
- Step 4. If $\left|K^{j}-\widehat{K}^{j}\right| \leq \varepsilon$, stop. Otherwise, let $K^{j+1}=(1-\gamma) K^{j}+\gamma \widehat{K}^{j}$ and go back to step 1

