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Aiyagari (1994) Model

• A household saving problem

V (k , ε) = max
c,a′

{
c1−σ

1− σ
+ β EV (k ′, ε′)

}
subject to

c + k ′ = (1 + r − δ)k + wεl̄

c ≥ 0, k ′ ≥ −φ

ε is idiosyncratic labor productivity shock.

• Firm’s problem

max = KαN1−α − rK − wN

For now, no aggregate TFP shock.
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Stationary Recursive Competitive Equilibrium

A stationary recursive competitive equilibrium is a set of functions,
v(k, ε) and g(k, ε), a set of prices and quantities (r ,w ,K ,N), and a
stationary distribution λ(k , ε) such that

• Given (r ,w), v(k, ε) and g(k , ε) solve the household’s dynamic
programming problem.

• Prices are competitively determined:

w = (1− α)

(
K

N

)α
, r = α

(
K

N

)α−1
− δ

• Market clears:

K =
∑
ε

∑
k

λ(k , ε)g(k , ε), N =
∑
ε

∑
k

λ(k, ε)εl̄

• λ(k, ε) is a stationary distribution from g(k , ε).
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Some Math Preparation



Introduction Math Preparation Dynamic Programming Stationary Distribution Solve Equilibrium

Some Key Elements in Numerical Computation

• Discretization

• Function Approximation

• Optimization

• Root Finding / Equation Solving



Introduction Math Preparation Dynamic Programming Stationary Distribution Solve Equilibrium

Function Approximation

How to approximate a continuous function from discrete function
values?

• We can use piece-wise polynomial approximation

• Idea: Construct a low-order polynomial for every two
neighboring grid points.
• We introduce two methods

• Cubic Spline
• Piecewise Cubic Hermite Interpolation Polynomial (PCHIP)
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Function Approximation

Cubic Spline: MATLAB function ”spline”
• A Cubic Spline is a set of piecewise cubic polynomials f̂ (x) for each

n = 1, 2, . . . ,N − 1 and x ∈ [xn, xn+1]

f̂n(x) = cn0 + cn1 (x − xn) + cn2 (x − xn)2 + cn3 (x − xn)3

such that

• Function value is continuous for all nodes:
f̂n (xn) = yn and f̂n+1 (xn+1) = yn+1 for all n = 1, 2, . . . ,N − 1

• First-order derivative is continuous for each interior node:
f̂ ′n (xn) = f̂ ′n+1 (xn) for 2 ≤ n ≤ N − 1

• Second-order derivative is continuous for each interior node:
f̂ ′′n (xn) = f̂ ′′n+1 (xn) for 2 ≤ n ≤ N − 1

• How can we pin down the coefficients?

• We have 4(N − 1) unknown parameters, but only
2(N − 1) + 2(N − 2) = 4N − 6 restrictions.

• Need two more conditions, for example
• ”not-a-knot”: f̂ ′′′1 (x2) = f̂ ′′′2 (x2), f̂ ′′′N−2 (xN−1) = f̂ ′′′N−1 (xN−1)
• Requirements on f̂ ′1 (x1) and f̂ ′N−1(xN).
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Function Approximation

Piecewise Cubic Hermite Interpolation Polynomial: MATLAB function ”pchip”

• Suppose on each node, we have data on both function value and first
derivative value: (xn, yn, y

′
n)

N
n=1, where

yn = f (xn)

y ′n = f ′ (xn)

• Then on each interval [xn, xn+1], the data uniquely determines a cubic
polynomial

f̂n(x) = cn0 + cn1 (x − xn) + cn2 (x − xn)2 + cn3 (x − xn)3

for x ∈ [xn, xn+1] through four conditions:

yn = f̂n (xn) , yn+1 = f̂n+1 (xn+1) ,

y ′n = f f̂ ′n (xn) , y ′n+1 = f̂ ′n (xn+1) .

• In reality, we usually don’t have data on derivatives.
MATLAB function ”pchip” approximate it by average of two slopes.
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Function Approximation

Comparison between Interpolation Methods

• Cubic spline is more smooth. We can easily calculate first and
second order derivatives from it.
• PCHIP is more shape-preserving. It can better preserve the

shape of a kinked line (for example, the policy function in the
Aiyagari model).

Figure: Comparison between Interpolation Methods
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Root Finding

How to find root(s) for a non-linear equation f (x) = 0 ?
• Bracketing Method

• Step 1: Find an interval (bracket) (a, b) such that
f (a)f (b) < 0.

• Step 2: Find a point x inside the bracket.
If f (a)f (x) > 0, let a = x ; if f (b)f (x) > 0, let b = x

• Step 3: Redo Step 2 on new (a, b)
• Step 4: Break when |b − a| is sufficiently small. Then x is the

root we find.

Figure: Bracketing Method
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Root Finding

Now the question is: how to find such a x inside the bracket
(a, b)?

• A naive way: bisection.

• More efficient way: by linear approximation.
In Step k, approximate f (x) around last Step’s xk−1:

f (x) ≈ f (xk−1) + Ak(x − xk−1)

f (xk−1) + Ak(x − xk−1) = 0⇒ xk = xk−1 − A−1k f (xk−1)

• How to choose Ak?
• Fixed point iteration: Ak =1.
• Newton’s method: Ak = f ′(xk−1).
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Root Finding

• Fixed point iteration

xk = xk−1 − f (xk−1)

• Newton’s method

xk = xk−1 − f (xk−1)−1f (xk−1)

Figure: Fixed Point Iteration Figure: Newton’s Method
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Root Finding

MATLAB built-in functions for equation solving

• fzero: solves one-dimensional non-linear equation

• fsolve: solves multi-dimensional non-linear equations

• Note: The idea of N-D non-linear equation solving is different
from 1-D case: it actually tries to solve the global minimum
of a quadratic function and uses function optimization.
Hence, directly uses optimization algorithm if you can.

• Recommend you to read MATLAB documentation.
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Optimization

How to find local minimum for a function f (x)?
Idea:

• We still use Bracketing Method: shrink bracket [a, b] until we find a
local minimum.

• A simple way: Bisection section search.

• More efficient way: by quadratic approximation.

f̂ (x) = c0 + c1x + c2x
2

If c2 > 0, a candidate iteration point is given by the minimizer

arg min f̂ (x) = − c1
2c2

If c2 < 0 or arg min f̂ (x) /∈ [a, b], update by safe methods like
bisection search.
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Optimization

How to solve coefficient c0, c1 and c2 in f̂ (x)?

• Brent’s Method: Use three function values.

MATLAB function: fminbnd

• Quasi-Newton Method: Use one function value and two first
derivatives.

f̂ (x) = f
(
x (k)

)
+ f ′

(
x (k)

)(
x − x (k)

)
+

1

2
A(k)

(
x − x (k)

)2
where

A(k) =
f ′
(
x (k)

)
− f ′

(
x (k−1)

)
x (k) − x (k−1)

MATLAB function: fmincon

• Newton Method: Use one function value, one first derivative and
one second derivative.

f̂ (x) = f
(
x (k)

)
+ f ′

(
x (k)

)(
x − x (k)

)
+

1

2
f ′′
(
x (k)

)(
x − x (k)

)2
MATLAB function: fmincon



Introduction Math Preparation Dynamic Programming Stationary Distribution Solve Equilibrium

Individual household’s dynamic
programming problem
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Solution Methods: An Overview

• Bellman Equation Methods
• Value function iteration
• Value function iteration with Howard improvement

• Euler Equation Methods
• Euler equation iteration / Policy function iteration
• Euler equation perturbation method (Dynare)
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Bellman Equation Methods

• Bellman Equation:

V (k, ε) = max
k ′

{
((1 + r − δ)k + wε− k ′)1−σ

1− σ
+ βEV

(
k ′, ε′

)}

subject to
−φ ≤ k ′ ≤ (1 + r − δ)k + wε

• Our goal:
Solve value function V (k , ε) and policy function k ′ = G (k , ε).
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Discretization of State Variables

We discretize the domain of functions V (k , s) and G (a, s). That
is, we discretize state variables k and s.

• Discretization of k : k and k ′ lies on a N by 1 grid with

n ∈ N = {1, 2, . . . ,N}
k ∈ K = {k1, k2, . . . , kN}

• Discretization of ε: ε follows S-state Markov Chain with state
space

s ∈ S = {1, 2, . . . ,S}
ε ∈ E = {ε1, ε2, . . . , εS}

and a S by S Transition Probability Matrix P

P
(
s, s ′

)
= Pr (εt+1 = εs′ | εt = εs)

Note: methods to discretize an AR(1) process into P
(1) Rouwenhorst (1995); (2) Tauchen (1991).
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Discretization of State Variables

Now the Bellman Equation becomes

V (kn, εs) = max
k′

{
((1 + r − δ)kn + wεs − k ′)

1−σ

1− σ
+ β

S∑
s′=1

P(s, s ′)V (k ′, εs′)

}

subject to
−φ ≤ k ′ ≤ (1 + r − δ)kn + wεs

k ′ ∈ K = {k1, k2, . . . , kN}

• Our goal:
Solve value function V (kn, εs) and policy function
k ′ = G (kn, εs) for

n ∈ N = {1, 2, . . . ,N}

s ∈ S = {1, 2, . . . ,S}
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Value Function Iteration: Idea

• We are essentially solving a root finding problem:

V = TV

f (V ) = V − TV = 0

• We can solve it by fixed point iteration
• Step 0: Choose an initial value function V .
• Step 1: Obtain new value function V ′ by

V ′ = V − f (V ) = V − (V − TV ) = TV

• Step 2: Check if ||V ′ − V || < tv , where tv is a predetermined
tolerance level. If not, let V = V ′, and redo Step 1-2.
Break if ||V ′ − V || < tv or number of iteration > MaxIterv

• It is value function iteration.
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Value Function Iteration

Then how can we perform this iteration?
Here we use a continuous-state method, by using function
interpolation.

• Begin with old value function
V (kn, εs) (n ∈ N = {1, 2, . . . ,N}, s ∈ S = {1, 2, . . . ,S})
• Our goal: obtain new value function on each grid point

(kn, εs).
• Interpolation

• Purpose:
V (kn, εs), n ∈ N = {1, 2, . . . ,N}, s ∈ S = {1, 2, . . . ,S} →
V (k , εs), k ∈ [k1, kN ], s ∈ S = {1, 2, . . . ,S}

• Cubic spline: vfn = spline(agrid,v.’);
• Evaluation: ppval(vfn,aprime);



Introduction Math Preparation Dynamic Programming Stationary Distribution Solve Equilibrium

Value Function Iteration

• Maximization

V (kn, εs) = max
k′

{
((1 + r − δ)kn + wεs − k ′)

1−σ

1− σ + β
S∑

s′=1

P(s, s ′)V
(
k ′, εs′

)}

subject to

k ′ ∈ [max{−φ, k1},min{(1 + r − δ)kn + wεs , kN}]

• Constrained Optimization
MATLAB built-in functions: fminbnd, fmincon.

• We obtain
(1) new value function V ′(kn, εs)
(2) policy function k ′ = g(kn, εs)
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Howard Improvement: Idea

• In value function iteration, we have a byproduct:
policy function k ′ = g(kn, εs).

• But in previous value function iteration, we completely ignore
the information in g .

• Now, how about utilizing the information in g ?
An idea: if g(kn, εs) is the true policy function, then we have

V (kn, εs) =
((1 + r − δ)kn + wεs − k ′)

1−σ

1− σ
+β

S∑
s′=1

P(s, s ′)V (k ′, εs′)

Then, given
k ′ = g(kn, εs), (n ∈ N = {1, 2, . . . ,N}, s ∈ S = {1, 2, . . . ,S}),
we can solve for V (kn, εs).
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Howard Improvement

But how can we solve for V (kn, εs)?
Again, it is an equation solving problem – we can use fixed point
iteration!

• Step 0: Choose an initial value function V (kn, εs).
• Step 1: Obtain a new value function V ′(kn, εs) by

V ′(kn, εs) =
((1 + r − δ)kn + wεs − k ′)

1−σ

1− σ
+β

S∑
s′=1

P(s, s ′)V (k ′, εs′)

• Step 2: Check if ||V ′ − V || < th. If not, let V = V ′ and redo
Step 1-2.
Break if ||V ′ − V || < th or number of iteration > MaxIterh
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Value Function Iteration + Howard Improvement

Now we combine VFI and Howard Improvement.

• Step 0: Initialization
(1) Set initial value function V 0(kn, εs) and policy function
G 0(kn, εs).

(2) Set tolerance level for value function, policy function and
Howard Improvement step: tv , tp, thp, and th.

(3) Set maximum iteration number Kv , and Jh.

• Step 1: Value function iteration.

In iteration k = 1, ...,Kv , use continuous state VFI to calculate
value function V̂ k and policy function G k .

• Step 2: Check. If ||V k − V k−1|| < tv and ||G k − G k−1|| < tp,
declare success with the solution V = V k−1 and G = G k .
Otherwise, go to Step 3.
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Value Function Iteration + Howard Improvement

• Step 3: Update.

If ||G k − G k−1|| < thp, then update V k by Howard Improvement.

• Step 3.0 Let V̂ k be initial value in Howard Improvement:
V 0
h = V̂ k .

• Step 3.1 For iteration j = 1, ..., Jh,

V j
h(kn, εs) =

(
(1 + r − δ)kn + wεs − G k(kn, εs)

)1−σ

1− σ

+β
S∑

s′=1

P(s, s ′)V j−1
h

(
G k(kn, εs), εs′

)
• Step 3.2 Check: if ||V j − V j−1|| < tv , break; otherwise, back

to Step 3.1.

Update V k by V k = Vh, which is obtained in the Howard
Improvement process.

If ||G k − G k−1|| ≥ thp, then update V k by original VFI value:

V k = V̂ k .
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Euler Equation Methods

Euler equation in the Aiyagari Model (suppose interior solution)

c−σ = β(1 + r)Ec ′−σ

((1 + r − δ)k + wε− k ′)−σ = β(1 + r)E((1 + r − δ)k ′ + wε′ − k ′′)−σ

((1 + r − δ)k + wε− g(k, ε))−σ = β(1 + r)E((1 + r − δ)g(k, ε) + wε′ − g(k ′, ε′))−σ

where g is the policy function: k ′ = g(k , ε) and k ′′ = g(k ′, ε′).

• Euler equation gives a functional equation of policy function
g : again, an equation-solving problem.

• Again, we can use fixed point iteration.
Given a policy function g̃ , we can solve for a new policy
function g by solving the root of equation

((1+r−δ)k+wε−g(k, ε))−σ = β(1+r)E((1+r−δ)g(k, ε)+wε′−g̃(k ′, ε′))−σ

Iterate until ||g̃ − g || < tp.
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Policy Function Iteration

Recall that in practice, policy function is on discrete grids:

k ′ = g(kn, εs), (n ∈ N = {1, 2, . . . ,N}, s ∈ S = {1, 2, . . . ,S})

Then there are two types on policy function iteration methods:

• Exogenous Grid Method

• Endogenous Grid Method
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Policy Function Iteration: Exogenous Grid Method

Euler Equation:

((1+r−δ)kn+wεs−k ′)−σ = β(1+r)E ((1+r−δ)k ′+wεs′−g(k ′, εs′))−σ

• Step 0: Choose an initial policy function g(kn, εs′)
(n ∈ N = {1, 2, . . . ,N}, s ∈ S = {1, 2, . . . ,S}).

• Step 1: Use interpolation to approximate continuous policy
functions g̃(k ′, εs′), s ∈ S = {1, 2, . . . ,S}.

• Step 2: For each n and s, solve new policy function
k ′ = g ′(kn, εs) from Euler Equation.

• Iterate until the convergent of policy function g on grid points.

Step 2 is time-consuming, since it involves solving a non-linear
equation.
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Policy Function Iteration: Endogenous Grid Method

Euler Equation:

((1+r−δ)kn+wεs−k ′)−σ = β(1+r)E ((1+r−δ)k ′+wεs′−g(k ′, εs′))−σ

• Step 0: Choose an initial policy function g(kn, εs′).

• Step 1: Endogenous Grid.
For each today’s ε = εs and each future k ′ = kn′ and
k ′′ = g (kn′ , εs′), solve today’s k from Euler Equation:

k̂n′s =
RHS−

1
σ + kn′ − wεs

1 + r − δ , RHS = β(1+r)E((1+r−δ)kn′+wεs′−g(kn′ , εs′))−σ

• Step 2: Function Approximation and Interpolation

For each today’s ε = εs , now we have
(
k̂n′s , kn′

)N
n′=1

. Use

interpolation to obtain a continuous policy function g̃ (k, εs).
Evaluate g̃ at exogenous grid point {k1, k2, . . . , kN} to get new
policy function g ′(kn, εs).

• Iterate until the convergent of policy function g on grid points.
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Endogenous Grid Method: Corner Solutions

Considering the possibility of corner solutions, Euler Equation
becomes

((1+r−δ)kn+wεs−k ′)−σ ≥ β(1+r)E ((1+r−δ)k ′+wεs′−g(k ′, εs′))−σ

”>” implies k ′ = 0 while k ′ > 0 implies ”=”.
How to deal with it?
– Add & Drop
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Endogenous Grid Method: Corner Solutions

If k̂n′s < φ, discard
(
k̂n′s , kn′

)
pair. For k ′ = k1 = φ, add all grid point

pair (kn, φ) to endogenous grids, where kn ≤ k̂1s .

Figure: ”Add” Case Figure: ”Drop” Case
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Stationary Distribution
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Evolution of Probability Distribution

• Evolution of an individual’s state (k , εs)

• With a continuous k , (k , εs) follows a continuous-state Markov
process with transition prob density function given by

Q ((k , εs) , (k ′, εs′)) = P (s, s ′) · I (k ′ = g (k, εs))

• Evolution of the distribution
The distribution over (k , εs), λ(k , εs), evolves according to

λt+1 (k ′, εs′) =
∑
s

∫
Q ((k , εs) , (k ′, εs′)) dλt(k, εs),

• Stationary distribution is defined as λ(k , εs) such that

λ (k ′, εs′) =
∑
s

∫
Q ((k , εs) , (k ′, εs′)) dλ(k, εs)
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Calculation of Stationary Distribution

Stationary distribution

λ
(
k ′, εs′

)
=
∑
s

∫
Q
(
(k , εs) ,

(
k ′, εs′

))
dλ(k, εs)

• Our goal is to numerically calculate the stationary distribution.

• Generally, there are two methods.

• Discretization Method
Approximate transition probability density function
Q((k , εs), (k ′, εs′)) by a Markov transition matrix Q.
Then we can calculate stationary distribution by this Markov
transition matrix Q.

• Stochastic Simulation Method
Simulates a large number of households over a long period of
time. Then we can finally obtain the stationary distribution.



Introduction Math Preparation Dynamic Programming Stationary Distribution Solve Equilibrium

Stationary Distribution: Discretization Method

Idea:

• First, imagine an ideal case: policy function k ′ = g(kn, εs)
happens to lie on the girds K = {k1, k2, . . . , kN}.
That is, for any k ′, there exists a n′ ∈ N = {1, 2, . . . ,N},
such that k ′ = kn′ .

• Then things become easy. Q becomes a NS × NS transition
matrix:

Q
(
(n, s),

(
n′, s ′

))
=

{
P (s, s ′) if n′ = g(n, s)
0 if n′ 6= g(n, s)

• But we know in reality, it is almost impossible that k ′ exactly
lies on the grid points.

• Then, one feasible way is that we assign probability values to
gird points based on their distance to k ′.
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Stationary Distribution: Discretization Method

Eric Young’s Method (2010, JEDC) to obtain a NS × NS
transition matrix Q

• For each (kn, εs), we can calculate Q((n, s), (n′, s ′))
(n′ ∈ N = {1, 2, . . . ,N}, s ′ ∈ S = {1, 2, . . . ,S})
by the following way:
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Stationary Distribution: Discretization Method

Calculate stationary distribution from transition matrix Q.

• Probability Evolution

λt = λt (kn, εs)

λt+1 = QTλt

• Stationary Distribution

λ = QTλ

• Two methods
• Method of eigenvalue and eigenvector
λ is the eigenvector which corresponds to eigen value 1 of
matrix QT .

• Iteration
Again, it is a equation solving problem. Just use fixed point
iteration.
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Stationary Distribution: Stochastic Simulation

• Step 0

Fix I agents, T periods, and an initial distribution
(
k i
0, s

i
0

)I
i=1

.

• Step 1

In 0 ≤ t ≤ T − 1, use the policy function k ′ = g(k, s) to calculate(
k i
t+1

)I
i=1

for each i ∈ I , i.e.

k i
t+1 = g

(
k i
t , s

i
t

)
and use transition matrix P (s, s ′) of shock s and a random number

generator to generate
(
s it+1

)I
i=1

• Step 2

Collect the simulated panel data with (T + 1) periods and I

households,
(
k i
t , s

i
t

)l,T
i=1,t=0

.

• Step 3

If the change in distributions is small between T − 1 and T , stop.
Otherwise, pick a larger T and go back to Step 0.
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Solve Equilibrium
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Capital Market Clearing Condition

• Capital demand from firms: K

• Capital supply from household:

S∑
s=1

N∑
n=1

λ(kn, εs)g(kn, εs)

or equivalently
N∑

n=1

(
S∑

s=1

λ(kn, εs)

)
kn

• Market clears:

K =
S∑

s=1

N∑
n=1

λ(kn, εs)g(kn, εs) =
N∑

n=1

(
S∑

s=1

λ(kn, εs)

)
kn
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Equilibrium Conditions

Recall our equilibrium conditions.

• Given (K ,N), (w , r) is determined competitively by

w = (1− α)

(
K

N

)α
, r = α

(
K

N

)α−1
− δ

• Given (r ,w), g(k, ε) is the policy function from household’s
dynamic programming problem.

• Given policy function g(k , ε) and transition matrix P, λ(k , ε) is the
stationary distribution.

• Market clearing condition for K and N:

K =
S∑

s=1

N∑
n=1

λ(kn, εs)g(kn, εs), N =
S∑

s=1

N∑
n=1

λ(k, εs)εs l̄ =
S∑

s=1

µ(εs)εs l̄

where µ is the invariant distribution of labor productivity shock,
given by P−1µ = µ.
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Equilibrium Conditions

We know in this model, N is exogenously determined by P and l̄ . Then
equilibrium conditions can be summarized as a equation of K : f (K) = 0, where
function value f (K) is defined by the following procedure.

• Step 1: Given N =
∑S

s=1 µ(εs)εs l̄ and K, solve (w , r) by

w = (1− α)
(
K
N

)α
, r = α

(
K
N

)α−1 − δ
• Step 2: Given (r ,w), solve a DP problem to obtain policy function

g(k, ε).

• Step 3: Given policy function g(k, ε) and transition matrix P, solve the
stationary distribution λ(k, ε).

• Step 4: From λ(k, ε) and g(kn, εs), calculate capital supply

K S =
S∑

s=1

N∑
n=1

λ(kn, εs)g(kn, εs)

• Step 5: Define f (K) = K − K S , which can be interpreted as excess
demand for capital

Hence, by market clear condition, excess demand is zero: f (K) = 0.
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Solve for Equilibrium

Again, we have an equation solving problem. Apply equation solving
methods to solve the equilibrium.
For example: A Dampened Fixed Point Iteration.
Procedure:

• Step 0: Choose an initial conjecture for capital demand K 0 > 0, a
stopping criterion ε > 0, and a parameter γ ∈ (0, 1].

• Step 1. In Iteration 0 ≤ j ≤ J, start with K j and compute r j and w j

from pricing functions.

• Step 2. Given
(
r j ,w j

)
, compute the household problem to get

g j(k, s) and associated stationary distribution λj(k, s).

• Step 3. Calculate capital supply K̂ j =
∑

k,s λ
j(k , s)k

• Step 4. If
∣∣∣K j − K̂ j

∣∣∣ ≤ ε, stop. Otherwise, let

K j+1 = (1− γ)K j + γK̂ j and go back to step 1
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