
Solving Khan and Thomas (2008) Using Winberry’s Algorithm

Prepared by Ding Dong

Sept 2020

1 Model: Khan and Thomas (2008)

The model of Khan and Thomas (2008) belongs to a large class of macro models with

heterogeneous firms. In the model, the distribution of firms over idiosyncratic states {ε, k} has

non-trivial role in shaping aggregate economy.

Household

There is a representative household whose preferences are represented by the utility func-

tion

maxEt

∞∑
t=0

βt[
C1−σ
t − 1

1− σ
− χN

1+α
t

1 + α
]

The household owns all the firms in the economy and markets are complete.

Firms

The firm produces with a decreasing return to scale technology using capital and labor as

input,

yjt = ezteεjtkθjtn
ν
jt (1)

where zt is aggregate productivity shock and εjt is idiosyncratic shock, both of which follow

AR(1). θ + ν < 1.

The adjustment of capital may incur a fixed cost. The law of motion is kjt+1 = (1 −
δ)kjt + ijt, where ijt is new investment. If

ijt
kjt

< −a or
ijt
kjt

> a, the firm must pay additional

ξjt unit of labor, which is a stochastic and i.i.d from a uniform distribution over [0, ξ̄].

Incorporate household’s problem into firm’s optimization, the Bellman equation of firms

is thus characterized by

v(ε, k, ξ; s) = λ(s)maxn{yjt − w(s)n}+ max{va(ε, k, ξ)− ξλ(s)w(s), vn(ε, k, ξ)} (2)

where marginal utility of consumption λ(s) = C(s)−σ, va(ε, k, ξ) denote value if a firm pays

adjustment cost and invest:

va(ε, k, ξ) = max
k′∈R

λ(s)[(1− δ)k − k′] + βE[ˆv(ε′, k′; s′|ε, k; s)] (3)

1

where ˆv(ε, k; s) = intv(ε′, k′; s′|ε, k; s)dG(ξ) and vn(ε, k, ξ) denote value if a firm invest within

the rate [-a,a]:

vn(ε, k, ξ) = max
k′∈[(1−δ−a)k,(1−δ+a)k]

λ(s)[(1− δ)k − k′] + βE[

∫
v(ε′, k′; s′|ε, k; s)dG(ξ)] (4)

There will be a unique threshold value of fixed cost ξ(ε, k) making the firm indifferent

between unconstrained or constrained investment:

˜ξ(ε, k; s) =
va − vn

λ(s)w(s)
(5)

Therefore, the expectation over ξ can be expressed analytically:

ˆv(ε, k; s) = λ(s) max
n
{yjt−w(s)n}+

ξ̂

ξ̄
[va(ε, k; s)− λ(s)w(s)

ˆξ(ε, k, ξ)

2
] + (1− ξ̂

ξ̄
)vn(ε, k; s) (6)

Equilibrium

• firm: solve problem above;

• household: λ(s) = C(s)−σ

• output market clearing

C(s) =

∫
[y + (1− δ)k − ξ̂

ξ̄
ka(ε, k; s) + (1− ξ̂

ξ̄
)kn(ε, k; s)]

• labor market clearing∫
[n(ε, k; s) +

ξ̂2(ε, k; s)

2ξ̄
]g(ε, k)dεdk = [

w(s)λ(s)

χ
]
1
α

• law of motion for distribution

g′(ε′, k′; s′) =

∫ ∫
[
ξ̂

ξ̄
{ka(ε, k; s) = k′}+ (1− ξ̂

ξ̄
){kn(ε, k; s) = k′}]f(ε′|ε)dεdk (7)

• law of motion for aggregate productivity

z′ = ρzz + σzω
′
z (8)

2

Introduction to the Algorithm

The algorithm of Winberry (2018) involves three major steps:

• Approximate equilibrium objects using finite-dimensional global approximation with re-

spect to individual state variables;

• Compute approximated stationary equilibrium with idiosyncratic shocks, but no aggre-

gate shock;

• Introduce aggregate shock and do perturbation around approximated stationary equilib-

rium.

3

2 Solving the Steady State

This script will solve for the steady state of the model, plot decision rules, plot the sta-

tionary distribution, compare the parametric family approximation of the distribution to a

non-parametric histogram, and compute steady state aggregates. See Appendix A.2 of the

paper for a discussion of how to solve the steady state.

set up parameters (setParameters.m)

• set up model parameters;

• set up approximation parameters:

– approximation of value function (order of n and nk)

– grid of idiosyncratic states (and k)

– parameters of value function iteration (max. steps, tolerance, Howard improvement

steps, damping)

– approximation of distribution (order of ng: nMeasure, # of quadrature points on

each dimension, # of coefficient g: nMeasureCoefficients)

4

Compute grids in various approximation (computeGrids.m)

including

• nodes to integrate idiosyncratic shocks (i.e. vShocksGrid) and weights (i.e. vShocksWeights)

(computeGaussHermiteQuadrature.m)

• grids for approximating value function and capital accumulation decision conditional on

adjusting (Chebyshev collocation nodes)

– compute original Chebyshev polynomials for (ε, k) within [-1,1];

– compute tensor product grid (i.e. mStateGridZeros)

– scale up to state space (scaleUp.m)

– compute grid of future productivity shocks (for computing expectations) (scale-

Down.m)

• grids for approximating histogram and plotting functions

– standard grid (finer than Chebyshev collocation nodes)

– individual state grids

– compute tensor product grid

– scale down to [-1,1] for polynomials (scaleDown.m)

– compute grid of future productivity shocks

– compute Tauchen transition matrix for productivity shocks

• nodes and weights to integrate parametric family

– compute grids in the interval [-1,1] (computeGaussHermiteQuadrature.m)

– scale up grid (scaleUp.m)

– compute tensor product grid

– scale down to [-1,1] (scaleDown.m)

– compute tensor product weights

– compute grid over future productivity shocks (useful in computing decisions)

5

Compute polynomial for approximating various objects (computePolynomials.m)

including

• polynomials for value function and capital accumulation conditional on adjusting

– create one-dimensional polynomials from computeGrids.m (i.e. mStateGridZeros)

– compute tensor product in polynomials

– compute squared terms for interpolation formulas (computeChebyshev.m)

– compute polynomials over future productivity shocks

• Chebyshev polynomials over fine grid for approximating histogram and plotting functions

– create one-dimensional polynomials (computeChebyshev.m)

– compute tensor product of polynomials

– compute polynomials over future shocks

• Chebyshev polynomials over quadrature grid for computing law of motion for parametric

family

– create one-dimensional polynomials (computeChebyshev.m)

– compute tensor product of polynomials

– compute polynomials over future shocks

• Derivative of Chebyshev polynomials over collocation nodes for computing first-order

condition in dynamic model

– create one-dimensional polynomials (computeChebyshev.m)

– compute tensor product of polynomials

• Derivative of Chebyshev polynomials over fine grid for plotting marginal value function

– create one-dimensional polynomials (computeChebyshev.m)

– compute tensor product of polynomials

6

Solve initial guess for w∗ using histogram (computeLMCResidualHistogram.m)

• use an initial guess on wage (i.e. wRepSS) as input

• compute implied labor demand residual

– compute labor demand from w=MPL on the grid (ε, k)

– compute profit, i.e. output less wage bill, on the grid (ε, k)

– compute parameters of approximation of value function θij (i.e. vCoefficients)

using value function iteration (updateCoefficients.m)

∗ compute investment decision conditional on adjustment (i.e. vCapitalAdjust)
1 (capitalResid.m)

∗ compute investment decision conditional on no adjustment (i.e. vCapitalConstrained)

∗ compute polynomials of next period’s value function, conditional on investment

decisions (i.e. mCapitalAdjustPrimePoly andmCapitalConstrainedPrimePoly)

∗ compute expected value function, if adjust (i.e. vV alueAdjust) or not (i.e.

vV alueConstrained)

∗ compute cut-off adjustment cost ξ̂ (i.e. vCutoff) and RHS of Bellman equation

(i.e. vNewGrid)

∗ compute new coefficients (i.e. vCoefficients) and update for finite times

– compute polynomial approximation of capital accumulation policy conditional on

adjustment (updateCoefficients.m)

– compute polynomial approximation of capital accumulation policy conditional on

adjustment or not (computePolicies.m)

– compute capital accumulation policy functions and cut-off shock over fine grid (com-

putePolicies.m)

– compute stationary distribution from policy functions using histogram following

Young (2010) (computeDiscreteTransitionMatrix.m)

– compute aggregate demand at labor market and residual

• solve for market clearing wage (i.e. wageInit)

• compute value function, policy function and distribution (i.e. vHistogram) at w =

wageInit (computeLMCResidualHistogram.m)

1only do it once per productivity value since its independent of capital

7

Compute moments of vHistogram as initial guess for parametric family (coreSteadyS-

tate.m)

• compute 1st, 2nd and higher moments from vHistogram (i.e. vMomentsHistogram)

• compute grid of centralized moments from moments (i.e. mGridMoments)

• compute parameters (i.e. vParameters) by minimizing integral equation2 (parameter-

sResidual.m)

Solve refined wage using exponential polynomials3 (coreSteadyState.m)

• use an initial guess on wage (i.e. wageInit) and initial guess of distribution parameters

(i.e. vParmaters, vMoments, mGridMoments) as input

• compute implied labor demand residual (computeLMCResidualPolynomials.m)

– compute labor demand from w=MPL on the grid (ε, k)

– compute profit, output less wage bill, on the grid (ε, k)

– compute parameters of approximation of value function (θij) using value function

iteration (updateCoefficients.m)

– compute polynomial approximation of capital accumulation policy conditional on

adjustment (updateCoefficients.m)

– compute polynomial approximation of capital accumulation policy conditional on

no adjustment (computePolicies.m)

– compute capital accumulation policy functions and cut-off shock over fine grid (com-

putePolicies.m)

– enforce choices to be within bounds

– replicate choices for each draw of future idioysncratic shock

– compute stationary distribution from policy functions by iterating on law of motion

– compute aggregate demand at labor market and residual

– compute compute steady state aggregates (i.e. aggregate consumption, marginal

utility, output, capital, investment)

• solve for market clearing wage (i.e. wage)

2g0 is chosen so that the total mass of the p.d.f. is 1.
3I use blue-colored text to highlight difference from previous step using histogram.

8

Compute steady state objects over histogram grid for plots

• compute compute steady state aggregates (i.e. aggregate consumption, marginal utility,

output, capital) (computeLMCResidualHistogram.m)

• compute capital accumulation policy conditional adjustment or not (computePolicies.m)

• compute marginal value function of capital (i.e. vCoefficientsDeriv)

Compute aggregates variables (computeLMCResidualPolynomials.m)

including

• parameters of distribution (i.e. vParameters)

• moments (i.e. vMoments)

• aggregate consumption (i.e. aggregateConsumption)

• marginal utility (i.e. marginalUtility)

• output (i.e. aggregateOutput)

• capital (i.e. aggregateCapital)

• investment (i.e. aggregateInvestment)

Compute density from parametric family over fine grid

• compute fine grid of centered moments (i.e. mGridMomentsF ine) with moments (i.e.

vMoments) solved above;

• compute distribution over fine grid (i.e. mFineDistribution) with parameters (i.e.

vParameters) solved above;

Plot and analyze steady state objects

9

3 Computing the Dynamic Model

This code solves for a local approximation of the model’s dynamics using DYNARE.

DYNARE will automatically print time-series statistics and plot impulse responses.

Set up (similar to steady state part)

• set parameters (setParameters.m)

• set grids (computeGrids.m)

• set polynomials over grids (computePolynomials.m)

• save above as parameters for DYNARE (i.e. economicParameters.mat, approximationParameters.mat,

grids.mat, polynomials.mat)

Solve for aggregate dynamics using DYNARE (dynamicModel.mod)

using Macro processors to

• load parameters4 (@include ”parameters.mod”)

– load in .mat files containing parameters (i.e. economicParameters.mat, approximationParameters.mat,

grids.mat, polynomials.mat)

– define economic parameters (as in standard Dynare .mod file)

– assign values of economic parameters (from economicParameters.mat)

– define approximation parameters

– assign values of approximation parameters (from approximationParameters.mat)

– define value function grid

– assign values of value function grid (from grids.mat)

– define quadrature grid and weights for idiosyncratic shock, integrating measure,

future productivity

– assign value of quadrature nodes and weights (from grids.mat)

– define polynomial over state grid, over future productivity, derivative of value func-

tion, squared terms of Chebyshev interpolation, over quadrature grid

– assign values of polynomial (from polynomials.mat)

4Parameters include the grids and polynomials defined over the grids.

10

• define variables (@include ”variables.mod”)

– value function coefficients (θs)

– capital policy conditional on adjustment or not

– moment

– distribution parameters (gs)

– prices: wage and marginal utility

– aggregate shock (TFP)

– other variables of interest, including aggregateConsumption, aggregateHours, ex-

pectedMarginalUtilityPrime, realInterestRate, logAggregateOutput, logAggregate-

Consumption, logAggregateInvestment, logAggregateHours, logWage, logMU

– exogenous shocks

• model equations (@include ”equations.mod”)

– expand capital policy conditional on adjustment (i.e. capitalAdjust) along entire

grid (# of equations = nState= nProd*nCapital)

– define Bellman equation for each point in iState in the individual state space

∗ compute expected value for next period, conditional on capital adjustment or

not (and the cut-off)

∗ compute RHS of Bellman equation: flow profits + expected value function

– FOC for adjust capital decision with MP*MU= MC (# of equations = nProd)

– compute objects over quadrature grid for integrating distribution

– relationship between moments of distribution and parameters (# of equations =

nMeasureCoefficients)

∗ define first moments (uncentered)

∗ define higher moments (centered)

– law of motion for distribution (# of equations = nMeasureCoefficients)

∗ compute first moment of productivity (uncentered)

∗ compute first moment of capital (uncentered)

∗ compute higher order moments (centered)

– labor Market clearing (# of equations = 2)

∗ define aggregate hours from labor demand

11

∗ set labor demand = labor supply

– output Market clearing (# of equations = 2)

∗ define aggregate consumption

∗ set marginal utility = u’(aggregate consumption)

– law of motion for aggregate shocks (# of equations = 1)

∗ AR(1) process

– auxiliary variables of interest (# equations = n)

∗ define aggregateConsumption, aggregateHours etc.

• specify the shock process

• steady state (dynamicModel steadystate.m)

– (computes stationary equilibrium of the model in a format required by Dynare)

– read in parameters from Dynare declaration

– call parameters (setParameters steadystate.m)

– solve for steady state wage (coreSteadyState.m)

– save grid and polynomials

– save steady state results for Dynare (updateCoefficients.m)

– load output for Dynare

• simulate the economy

12

Reference

Khan, A. & Thomas, J. K. (2008). Idiosyncratic shocks and the role of nonconvexities in plant

and aggregate investment dynamics. Econometrica, 76 (2), 395–436.

Winberry, T. (2018). A method for solving and estimating heterogeneous agent macro models.

Quantitative Economics, 9 (3), 1123–1151.

Young, E. R. (2010). Solving the incomplete markets model with aggregate uncertainty us-

ing the krusell–smith algorithm and non-stochastic simulations. Journal of Economic

Dynamics and Control, 34 (1), 36–41.

13

	Model: khan2008idiosyncratic
	Solving the Steady State
	Computing the Dynamic Model
	Reference

