Aiyagari and equilibrium effects and K-S Algorithm
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Model Setting

In the model, there is no aggregate risk and no aggregate dynamics.
Capital is fixed at some (endogenous) level K and labour is normalized to 1.

A representative furm that pays competitive prices for capital and labour,
with rental rate and the wage rate are given by

r=ak* 1

w=(1l-a)K" )

With no aggregate dynamics, w and r are constant.

Each individual is subject to a labour productivity shock z;;, and markets
are incomplete, so that the only way to insure against a negative shock is
by investing and disinvesting in capital.



Model Setting(cont.)

® An individual takes the wage and the capital rental rate as given and solves:

1 v
max EZﬁt< it ée><p( Cokit) —Czki,t> , s.t

{ci,e,ki,e} —1 CO
Cit+ Kie = rkis—1 +wzie + (1 — 6)kir—1
Zit = (1-p)+ pPZit—1+ €t

()

® The penalty function in the utility implements ensures that the problem is
well behaved and prevents Ponzi schemes.
® We will focus on low values of (p.
® First, the higher the value of (p the more nonlinear the problem and the
harder it would be to obtain a solution with perturbation techniques.
® Second, the inequality constraint is quite extreme and a gradual formulation
may very well be more realistic.



F.O.C and Steady State

The first-order condition for the individual’s problem is:

i = —C+ Crexp (—Cokie) + B¢ 5

The penalty parameter is set such that

<2 = Cl eXP(—Co kss)

otherwise there won't be steady state.

We can get steady state interest rate

(r+1-9)

3)

(4)

(5)
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Programs: mod| file

® In the Aiyagari.mod file, we fill in the parameters and model part
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load parametervalues; % Already saved in diseq.m
set__param_ value( 'betta', par.beta);

set__param__value (
set__param_ value('a
set__param__value(
set_ param_ value(
set__param_ value(
set_ param_value('rho', par.rho);
set_ param_ value(
set_param_value(
set__param_ value( 'k
set__param_ value( 'r

dlphd , par.alpha);
, par.a);

zeta0 ', par.zeta0O);

zetal', par.zetal);

zeta2 ', par.zeta2);

SLgshock , par.sigshock);
nu', par.nu);
_init"', par.kini);
'r', r); % Taken as given for individual

% Euler Equation

¢ (—nu)=
z
c+ k

—zeta24zetalxexp(—zetaOxk)+bettaxc(+1) (—nu)*(r+l—a);
(1—rho)+rhox*z(—1)+e; % Shock Process
rxk(—1)4wxz+(1—a)*k(—1);% Resource Constraint




Programs: diseq.m| file

® |n diseq.m file, it computes the difference between the capital supply and
capital demand given the interest rate r.

1 function [diff ,ks] = diseq(r,par,z,shocks)% r enter as a param
2 k = zeros(par.T,1);
3 save parametervalues r par %Saves parameter values ...

to a file that will be read by Dynare
dynare Aiyagari_ full noclearall % Runs Dynare
% Change the file name after filling mod file!
load dynarerocks;
% Loads the decision rules to a matrix called 'decision'.
% Requires displace disp_dr.m file in the Dynare path.
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Programs: diseq.m| file (cont.)

® To realize the idiosyncratic shock for a continuum of household, we can
turn it into a time-series process for multiple periods, whose time-dimension
aggregation is equivalent to the aggregation of the household!!!
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z = ones(par.T,1);
for t=2:par.T
z(t) = l—par.rho + par.rhoxz(t—1)+shocks(t);

end
k(1) = para.kini;
for t = 2:par.T % From the decision matrix computed by Dynare!

k(t)=decision (1)+decision (3)*k(t—1)+decision (4)*z(t)
+decision (5)*shocks(t)+decision (6)xk(t—1)"2
+decision (7)*k(t—1)*z(t)+decision (8)*z(t) 2
+decision (9)*shocks(t) 2+decision (10)*shocks (t)xk(t—1)
+decision (11)*shocks (t)*z(t—1);

end
ks = mean(k(par.TO:end)); % average capital supply from HH
kd = (r/par.alpha)”™(1/(par.alpha—1)); % implied capital dmnd
diff = ks—kd:
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Main Programs: SolveAiyagari.m| file

® The whole solving process is as follows:

Supply>Demand

Firm F.O.C condition

Capital Demand "

2o

Difference of Capital g
r: An Guess

Solve policy rule by
ynare ®

fAggregation: Tricks! .

Individual Decision

o ‘S‘upply< Demand

Figure: The whole solving process

® Now we have to fill the determine sentences of interest rate r.



Main Programs: SolveAiyagari.m| file

® First an increase in volatility is considered in the equilibrium model.

® Second, using the equilibrium interest rate of the low-volatility economy, we
then resolve the two economies to measure the partial equilibrium response
of the increase in volatility.

1 %

2 % 1. Parameters

3 %

4 par.T = 100000;% length of simulation

5 par.TO = 10001; % start of sample

6 ...

7 % allocating memory and shock values

8 z = omnes(par.T,1); % idiosyncratic shocks
9 k = zeros(par.T,1); % Intial capital for individual
1 ks_ partial = zeros(2,1);

1 ks_ge = zeros(2,1);

12 r_ge = zeros(2,1);

13 sigs = [0.001;0.3]; % values for standard deviations of shocks




Loop over sigma for equilibrium r

® The algorithm for root finding is
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Figure: Equilibrium Root Finding



Loop over sigma for equilibrium r

for i = 1:2 % defining shocks
par.sigshock = sigs(i); % choosing standard deviation
shocks = par.sigshock*innovations;

for t = 2:par.T

z(t) = l—par.rho + par.rho*z(t—1) + shocks(t);

end
% Solve for equilibrium r
r_1 = r—0.0001; % lower bound for r at which ks < kd
r_u = r+0.0001; % upper bound for r at which ks > kd
err = 100; % initial error
r_x =r_u;

[diseq_r 1,ks 1] = diseq(r_1,par,z,shocks);
[diseq_r_u,ks_u] = diseq(r_u,par,z,shocks);
[diseq_r x,ks x] = diseq(r_x,par,z,shocks);
prodct = diseq_r_ lxdiseq_r_u;

if prodect > 0 % A warning for a narrow initial interval
disp(' root not in between r 1 and r u')
disp (' adjust r 1 or r u')
stop

end




Loop over sigma for equilibrium r
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disp(' root in between r_1 and r u')
disp ([r_1 r_x r_u diseq_r_1 diseq_r_x diseq_r_u])%pause

while err > par.tol
r_x_old = r_x;
r_x =r u— ..
diseq_r ux(r_u—r_1)/(diseq r u—diseq_r_1) % Newton
[diseq_r_x,ks_x] = diseq(r_x,par,z,shocks);

disp (diseq_r_x)
disp ([r_1 r_x r_u diseq_r_1 diseq_r_x diseq_r_u])

Y%pause
if r x #0

err = abs((r_x — r_x_old)/r_x) = 100;
else

err = abs(r_x — r_x_old);
end

test = diseq_r_lxdiseq_r_x;




Loop over sigma for equilibrium r
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if test =0
err = 0; % root is at r_x
elseif test < 0
r_u =r_x; %root is below r_x
diseq_r_u = diseq_r_x;
else
r_1 =r_x; %root is above r_x
diseq_r_1 = diseq_r_x;
end
end
ks_ge(i) = ks_x; % general equilibrium capital
r_ge(i) =r_x; % general equilibrium interest rate
end
% Save values for proj_PE.m This just saves the Dynare's ...

results. They will be used later as starting values for
projection.

save r_ge

save ks_ ge

save par




Partial Equilibrium Result

e Fill in the empty part by your own:)

® The effects of volatility are larger in partial than in general equilibrium.
® The reason that causes the dampening is
® |n the general equilibrium, people save more for precautionary — r | due to
equilibrium effect — K| due to the price rise.

® However, in the partial equilibrium, the precautionary saving doesn't affect
interest rate, which obliterates the second effect.



Krusell and Smith Model
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Krusell and Smith(1998): idiosyncratic+agg. shock

e Krusell and Smith(1998) is the same as Aiyagari assignment except that
there is not only idiosyncratic, but also aggregate productivity shocks.

® The presence of aggregate shocks makes the problem much harder because
now the cross-sectional distribution is time-varying which means that we
have a (time-varying) state variable that is infinite-dimensional.

® The algorithm takes three steps
1. Start with the (assumed!) following law of motion for the capital stock:

Ki = bo + bxKi_1 + bz (z: — 2) @)

Compared with Aiyagari, we have an extra state variable, K ;.

2. Given the policy rules of the individuals obtained in (1), conduct a Monte
Carlo simulation for a panel of / agents. Each period aggregate the
individual capital stocks to obtain a time series for aggregate capital K.

3. Run a regression to update the coefficients of the law of motion of K7 given
in (7). Go back to (1) until the law of motion obtained in (3) is (basically)
the same as (1).



Algorithm of Krusell-Smith
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Figure: Algorithm of Krusell-Smith



The Dynare file

® Fill in the parameter loading part and the equations

1
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load parametervalues; % Delete the b 0 b _k b z of it in m ..
file saving part since it interrupts!
load aggregatelaw; % Updated coefficients store here

% Euler Equation

1/c = —zeta2+4zetalxexp(—zetalxk)+betaxl/c(+1)*(r(+1)+1—a);
% Shock Process
z = (1—rho)+4rhox*z(—1)+e2;

% Resource Constraint
ctk = rxk(—1)4wx(1+el)+(1—a)xk(—1);

% F.O.C 1

r = alphaxzxKa(—1) " (alpha—1);
% F.O0.C 2

w = (1—alpha)=*z*Ka(—1)"(alpha);
% Law of motion, updated

Ka = b_04b K«Ka(—1)+b_z*(z—1);

® Now we finish the mod file.




The main file

® A quick review of the file

% settings
T=10000; % number of time periods in simulation step

% parameter values
% initial values for LoM coefficients for aggregate capital

save parametervalues
% reserve memory

11 % draw shocks and simulate productivity
12 %% Fill in the construction of shocks

13 % Loop to find the coefficients

15 %% Fill in the step 2 and 3

® Now we construct the shocks(exactly the same, copy it) and fill in the loop.



Make use of Policy Rule

while error > crit % step 1

save aggregatelaw b_0 b K b_z sig_el

dynare model_agg uncertainty.mod noclearall % policy rule!
load dynarerocks % uploads the decision

for t=2:T % step 2

% compute individual k using decision rules by dynare

Ka ss = b _0/(1—b_K); % Update the steady state of Ka

k_ss = decision(1,1)—decision(2,1);

k sim(:,t)=k _ss + [—ones(N,1)%Correction term take minus sign

(k_sim(:,t—1)k_ss) ones (N,1) *(z_sim(t—1)—1)
ones (N,1) x(Ka_sim(t—1)Ka_ss) el sim(:,t)
ones (N,1)*e2_sim(t) (k_sim(:,t—1)k ss)."2

(z_sim(t—1)—1)*(k_sim (: ,t—1)k_ss)
ones(N,1) *(z_sim(t—1)—1).72

ones(N,1)*(Ka_ sim(t—1)Ka ss)xe2 sim(t)]*decision(2:end,1);

Ka sim(t)= mean(k sim(:,t));% compute aggregate capital
end

® The policy rule gives Taylor expansion at the state state of each state
variable. Update according to the deviation from ss of each term, not ss!




® Now that we finish the simulation given the to-be-verified by, bk, b,. Redo
the regression under simulation until the coefficient converge.

1 % step 3: run a regression and update law of motion for Ka

2 [b,\-]=regress (Ka_sim(2+Tdiscard:T),

3 [ones (T—1—Tdiscard ,1)

4 Ka_sim(1+Tdiscard : T—1)

5 z_sim(2+Tdiscard:T) —1]); % Discard periods with ..
diverging k

6 error = max(abs([b_0-b(1l) b K-b(2) b_zb(3)])) % Update ...
the distance of coefficient

7 % Update Coefficient

8 b_0=b(1)

9 b K=b(2)

10 b_z=b(3)




Impulse Response Function
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Figure: Impulse response to idiosyncratic ~ Figure: Impulse response to aggregate
shock shock

® Positive idiosyncratic shock: ¢ 1, wage, agg. capital, return rate —.
® Positive agg. shock: z1— r,w1T— ¢; Y T— k7 through B.C. — K, 1.
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Linear form of LoM

® The linear form setting of the law of motion of aggregate shock induces a
question mark about its accuracy.

® Before answering the inaccuracy due to the setting, one question is whether
we can alter the LoM to incorporate the second moments change of
aggregate capital.

® eg. K? = by + bKlE( ?_1) + bKZStd( ?—1) + bz (Zt — Z)
® Unfortunately, the answer is no.



Linear form of LoM(cont.)

With the setting of linear form, Dynare gives policy function with form
K = F(k,z, e, K — E(K?)) (8)
With aggregation, we have
K =YK = £F(k, z,e1, K* — E(K?)) 9)
Including second order, the policy function becomes
K = F(k, z, e, K — E(K?),[K* — E(K%)]?) (10)
Consider [K — E(K)]?, it becomes
{F(k,z, e1, K* — E(K?), [K* — E(K*)]*)—E[F(k, z, 1, k — E(k),[K* — E(K*)]*)]}?
which induce [K — E(K')]*. -

During further computation, infinite moments will be generated, which
can't be enumerated.



Winberry (2018)

® The key assumption involves two elements

® Policy function
® Law of motion

® Winberry(2018) induce a way —— Histogram.
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