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Solving Incomplete Market Models with Hetero Agents

• Projection
• DR2010-JEDC (Exact Aggregation/Xpa) *
• AAD2008-JEDC
• AAD2010-JEDC
• Reiter2010-JEDC

• Perturbation
• KKK2010-JEDC
• PR2006-WP

• Hybrid:
• Projection and Simulation (i.e., Krusell-Smith Algorithm)

• KS1998-JPE
• MMV2010-JEDC (KS- Stochastic Simulation). *
• Young2010-JEDC (KS- Non-Stochastic Simulation 2)

• Projection and Perturbation
• Reiter2009-JEDC*
• Winberry2018-QE*

• Continuous-time: AKMWW2018-NBER Macro Annual
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Environment: DJJ2010-JEDC

c−γi = hi + βE [(c ′i )
−γ(1− δ + r ′)] (1)

ci + k ′i = ki r + [(1− τt)εt + µ(1− εt)]w + (1− δ)ki (2)

k ′ ≥ 0 (3)

hk ′ = 0 (4)

w = (1− α)at(
Kt

Lt
)α (5)

r = αat(
Kt

Lt
)α−1 (6)

τt =
µut
Lt

=
µ(1− Lt)

Lt
(7)
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Environment: DJJ2010-JEDC

• Transition probabilities: (Table 2)
s, e/s ′e′ b, u b, e g , u g , e
b, u 0.525 0.35 0.03125 0.09375
b, e 0.038889 0.836111 0.002083 0.122917
g , u 0.09375 0.03125 0.291667 0.583333
g , e 0.009115 0.115885 0.024306 0.850694

• Aggregate states: bad / good:
• at = 1 + ∆, if good;
• at = 1 − ∆, if bad.

• Idiosyncratic states: employed / unemployed:
• εt = 1, if employed;
• εt = 0, if unemployed;
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Computational Challenges

Euler Equation (policy function):

c(ε, k;m, a)−σ = h(ε, k ;m, a) + βE [c(ε′, k ′;m′, a′)−σ(1− δ + r ′)]

where optimal consumption c(ε, k ;m, a) =

r(m, a)k + [(1− τt(m, a))εt +µ(1− εt)]w(m, a) + (1− δ)k−k ′(ε, k;m, a)

and m is the (joint) distribution of capital and employment status
(usually an infinite-dimensional object).
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Computational Challenges

• decisions of each heterogeneous agent depend on r and w.

• r and w depend on the aggregate capital stock;

• aggregate capital stock is determined by cross-sectional capital
holding of all heterogeneous agents;

• capital distribution is a state variable, and

• capital distribution is typically an infinite-dimensional object

• complicated fixed point problem: each agent’s saving decision
depends on his expectation on the dynamics of distribution; the
dynamics of distribution depend on agent’s saving decision.

• infinite-dimensional fixed point problem
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Krusell-Smith Algorithm

KS Algorithm: Approximate the distribution with a small number of
moments (often mean and variance).

• if future prices are accurately forecasted by the small number of
moments: globally accurate and can capture the global
non-linearities.

• if the low-order moments cannot fully capture the price dynamics,
i.e. when firms follow (S,s) rule, KS algorithm, or ”Approximate
Aggregation” fails.

• need ”Explicit Aggregation” (XPA, DR2010-JEDC) or
perturbation and projection (Reiter 2009, Winberry 2018).
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Equilibrium

The equilibrium in general features two parts:

• policy rule for control variables

• law of motion of state variables

In RA models:

• individual policy rule = aggregate policy rule

• LM of individual state variables= ALM

Not true for HA models:

• individual policy rule → aggregation w. distn → aggregate policy
rule

• LM of individual state variables→ aggregation w. distn → ALM
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Individual Problem: Grids

Individual Problem:

k̃ ′ = [(1− τt)ε+ µ(1− ε)]w + (1− δ + r)k−

{h + βE [
1− δ + r ′

[(1− τ ′)w ′ε′ + µ(1− ε′)w ′ + (1− δ + r ′)k ′ − k ′(k ′)]γ
]}−1/γ

We solve this equation following an iterative procedures on a grid.

Grid of points: (k, ε, m, a).
Restrictions on the grid: k ∈ [0, kmax ]; m ∈ [mmin,mmax ].
Similar to KS(1998), we assume first moment is sufficient.
Grid of points: (k, ε, Kmean, a).
Restrictions: k ∈ [0, kmax ]; Kmean ∈ [Kmeanmin,Kmeanmax ].
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Individual Problem: Iterative Procedures

Individual Problem:

k̃ ′ = [(1− τt)ε+ µ(1− ε)]w + (1− δ + r)k−

{h + βE [
1− δ + r ′

[(1− τ ′)w ′ε′ + µ(1− ε′)w ′ + (1− δ + r ′)k ′ − k ′(k ′)]γ
]}−1/γ

We solve this equation following an iterative procedures on a grid.

Given initial states a and εi for all i, r and w (on RHS) are known.
Initial capital function: k’(k, ε, Kmean, a)=0.9k.
k’ is known, thus K’ and E (r ′) (on RHS) are known.
With transition probabilities, E (τ ′), E (w ′) and E (ε′) are known.
set h=0.
New capital function k̃ ′ is known for any k.

Updated capital function:
˜̃
k ′ = ηk̃ ′() + (1− η)k ′().
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Individual Problem: Practical Issues

• kmax . We can set kmax very large: all k’ fall into [0, kmax ],
but it’s very costly in computation.
We instead set a relatively large kmax , and bound k’ whenever it
exceeds the grid. (in our case we set kmax = 1000)

• Occasionally binding constraint. We need more grid points at low
level of capital and fewer points at high level of capital.
A simple polynomial rule for placement of grid points:

kj = (
j

J
)θkmax , j = 0, 1, 2, ..., J (8)

θ = 1: equal distance b/w grid points;
θ > 1: concentration at the bottom.

• updating parameter (η): trade-off b/w speed and stability.

• convergence parameter: time to stop.
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Aggregate Problem: ALM

• We approximate aggregate law of motion by:

m′ = f (m, a; b) (9)

where b is a vector of ALM coefficient (this is regression!).

• We estimate the following equations in two aggregate states:

log(Kt+1) = b1 + b2log(Kt), if state is good; (10)

log(Kt+1) = b3 + b4log(Kt), if state is bad; (11)

• Stochastic Simulation: This paper

• Non-stochastic Simulation: Young (2010 JEDC); Den Haan (2010
JEDC)
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Aggregate Problem: Iterative Procedures

• Fixed initial capital distribution, initial aggregate shocks and initial
idiosyncratic shocks. (N=10,000)

• Generate time series of T period aggregate shocks, and idiosyncratic
shocks.

• Guess an initial vector of coefficients b. (i.e., [0,1;0,1]:

log(Kt+1) = 0 + log(Kt), if state is good or bad;

• Solve the Individual Problem.

• Simulate the economy for T periods forward, explicitly solve
cross-sectional capital holding, and calculate the mean Kt .

• Regress Kt+1 on Kt
1, get new vector of coefficients b̃.

• Updated vector of coefficients: ˜̃b = λb̃ + (1− λ)b.

1discard 100 initial periods to mitigate the effect of initial distribution
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program

The program includes the following subroutines:

• ”MAIN.m” (computes a solution and stores the results in
”Solution”)

• ”SHOCKS.m” (a subroutine of MAIN.m; generates the shocks)

• ”INDIVIDUAL.m” (a subroutine of MAIN.m; computes a solution to
the individual problem)

• ”AGGREGATE.m” (a subroutine of MAIN.m; performs the
stochastic simulation)

• ”Inputs for test” (contains initial distribution of capital and
10,000-period realizations of aggregate shock and idiosyncratic
shock for one agent provided by Den Haan, Judd and Juillard, 2008)
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program: MAIN.m

MAIN.m include the following sections:

• parameters: including model parameters, stimulation
parameters,transition probabilities, steady state values of capital

• shocks: call ”SHOCK.m” functions for aggr. and idio. shocks.

• grids: including capital, moments of capital (mean)

• initials: including capital evolution function, distribution, ALM

• convergence: including initial diff value, criteria, updating
parameters)

• solver: call ”INDIVIDUAL.m” and ”AGGREGATE.m” functions

• figures
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program: SHOCK.m

T periods and N agents

• aggregate shocks: (T,1);

• idiosyncratic shocks: (T,N)

• given an initial agg. state

• generate cross-sectional initial idios. state accordingly

• simulate agg. shocks T periods forward with transition prob

• simulate idios. shocks T periods forward with transition prob,
conditional on evolution of aggregate states
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program: INDIVIDUAL.m

Iterative procedures:

• auxilary matrices of transition prob on the grid

• auxilary matrices of k, Kmean, a, e on the grid

• r, w and wealth(t)

• c and u’(c)

• Kmean’

• r’, w’ and wealth(t+1)

• c’ and u’(c’)

• update k’

• update c
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Comments 2

Advantage of KS algorithm:

• simple and intuitive

• widely used

Disadvantage of KS algorithm:

• approximate aggregate

• can the distribution be summarized by mean and variance?

• sampling noise in simulation

• computatonal cost

2see Den Haan(2010) for a discussion on KS algorithm
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Reference and Further Reading

Reference

• Maliar, L., Maliar, S., Valli, F. (2010). Solving the incomplete
markets model with aggregate uncertainty using the KrusellSmith
algorithm. Journal of Economic Dynamics and Control, 34(1),
42-49.

Further Reading for non-stochastic simulation method

• Den Haan, W. J. (2010). Comparison of solutions to the incomplete
markets model with aggregate uncertainty. Journal of Economic
Dynamics and Control, 34(1), 4-27.

• Young, E. R. (2010). Solving the incomplete markets model with
aggregate uncertainty using the KrusellSmith algorithm and
non-stochastic simulations. Journal of Economic Dynamics and
Control, 34(1), 36-41.
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Reference and Further Reading

Further Reading for KS Algorithm/Application

• (classic) Krusell, P., Smith, Jr, A. A. (1998). Income and wealth
heterogeneity in the macroeconomy. Journal of political Economy,
106(5), 867-896.

• (review) Terry, S. J. (2017). Alternative methods for solving
heterogeneous firm models. Journal of Money, Credit and Banking,
49(6), 1081-1111.

• (application) Khan, A., Thomas, J. K. (2008). Idiosyncratic shocks
and the role of nonconvexities in plant and aggregate investment
dynamics. Econometrica, 76(2), 395-436.
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