Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity

Khan and Thomas

Presented By Ding Dong Department of Economics, HKUST

HKUST Macro Group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

		High	light	
• M	acro model sti	udying credit sh	ock see also	

• as disturbance to asset collateral value (Jermann & Quadrini 12')

- · with rich firm heterogeneity
- qualitatively different recession from tfp-driven ones
- Firm dynamic model with see also
 - real and financial frictions
 - inefficient capital allocation
 - non-trivial macroeconomic effects
- First DSGE model combining
 - firm heterogeneity
 - real frictions
 - financial frictions (Kiyotaki & Moore 97')
- Numerical method of independent merit

Failure of Neoclassical Investment Model

• A standard neoclassical firm's problem:

$$max \quad k_{it}^{\alpha} - i_{i,t} - \frac{1}{2}\phi(i_{it}/k_{it})^{2}k_{it} + \frac{1}{1+r}v(k_{it+1})$$

s.t. $k_{it+1}^{\alpha} = (1-\delta)k_{it} + i_{i,t}$ (multiplier : q_{it})

f.o.cs

$$q_{it} = v'(k_{it+1})$$

 $q_{it} = 1 + \phi(i_{it}/k_{it})$

- Two implications of the q-theory model:
 - 1. q_{it} is the marginal value of capital to the firm;
 - 2. investment (ratio) is positively related to q_{it} :

$$i_{it}/k_{it} = \phi^{-1}(q_{it}-1)$$

Failure of Neoclassical Investment Model

• Proxy for q (under constant returns):

$$v'(k_{it}) = \frac{v(k_{it})}{k_{it}}$$

$$q_{it} = \frac{v(k_{it+1})}{k_{it+1}} = \frac{1}{1+r} \sum_{s} (\frac{1-\delta}{1+r})^{s} [\alpha k_{it+s+1}^{\alpha-1} + \phi_{it+s+1}]$$

• Empirical regression:

$$\frac{i_{it}}{k_{it}} = \alpha_i + \beta q_{it} + \mathbf{B} ctrvar_{it} + \varepsilon_{it}$$

- Failures of neoclassical investment model:
 - Coefficient β is estimated to be small and unstable;
 - Coefficients on *ctrvars*, especially cash flow, are large and significant.
- Lessons from failures of neoclassical investment model:
 - Real frictions (non-convex adjustment costs etc.) are important;
 - Financial frictions (borrowing constraints etc.) are important.

Frictionless Economy

Two-period model:

$$\max_{k_{i1},b_{i1}} d_{i0} + \frac{1}{R} E[d_{i1}]$$
$$d_{i0} = x_{i0} + \frac{1}{R} b_{i1} - k_{i1}$$
$$d_{i1} = z_{i1} k_{i1}^{\alpha} - b_{i1}$$

Solution (*MM theorem*):

$$k_{i1} = \left(\frac{\alpha E[z_{i1}]}{R}\right)^{\frac{1}{1-\alpha}}$$

- \rightarrow any finite b and d optimal
- \Rightarrow Frictionless model makes no prediction about financial variables

Financial Frictions

• Common frictions to equity finance:

- Cannot raise new equity: $d_{i0} \ge 0$
- Costly to raise new equity: pay some cost if $d_{i0} < 0$
- Dividend adjustment cost: φ(d_{i0}, d^{*})
- Common frictions to debt finance:
 - Collateral constraint: $b_{i0} \leq$ (some measurement of) collateral value

- Limited commitment: default risk \rightarrow risk premium
- \Rightarrow Non-trivial effects of financial variables for investment!
- Frictions in this paper:
 - a. (equity) cannot raise new equity: $d_{i0} \ge 0$
 - b. (debt) collateral constraint: $b_{i0} \leq$ collateral value

Firm Heterogeneity $\{k, b, \varepsilon\}$

Firm Heterogeneity:

- k: predetermined capital
 - some degree of specificity
 - partial investment irreversibility
 - when i > 0, $k' = (1 \delta)k + i$ when i < 0, $\theta_k k' = \theta_k (1 - \delta)k + i$, $\theta_k < 1$
- b: constrained borrowing
 - current capital as collateral
 - taken specificity into account
 - borrowing constraint

$$b' \leq \zeta_I \theta_k k$$

- ε : idiosyncratic productivity
 - production function

$$y = z\varepsilon F(k, n)$$

- persistent shocks to z
- persistent shocks to ε

Immediate Messages

 $\mathsf{Frictions}^1 + \mathsf{Heterogeneity}:$

- (real) partial irreversibility:
 - lumpiness: frequency of large investment
 - persistence: positive auto-corr of investment
 - investment rules of (S,s) type
- (real) partial irreversibility+ idiosyncratic shocks: large but unproductive firms cannot adjust to optimal level
- (financial) borrowing constraint + idiosyncratic shocks: small but productive firms cannot adjust to optimal level ⇒ disproportionate capital stock to productivity.
- Does such misallocation amplify credit shock?

¹There is no frictions in labor market: so that same $(k, \varepsilon) \rightarrow \text{same}(\underline{n}, y) \in \mathbb{R}$ $\Rightarrow \quad \mathbb{R} \longrightarrow \mathbb{R}$

	Firm's I	Problem	

Expected value *before* the beginning of each period:

$$v_0(k, b, \varepsilon; s, \mu) = (1 - \pi_d) v(k, b, \varepsilon; s, \mu) + \pi_d \max_n [z \varepsilon F(k, n) - \omega(s, \mu)n + \theta_k (1 - \delta)k - b]$$
(1)

Value of continuation at the beginning of each period:

$$v(k, b, \varepsilon; s, \mu) = \max\{v^{u}(k, b, \varepsilon; s, \mu), v^{d}(k, b, \varepsilon; s, \mu)\}$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Firm's F	^{>} roblem	

Upward Adjusting Firm:

$$v^{u}(k,b,\varepsilon;s,\mu) = \max_{n,k',b',D} [D + E_{s'}d_{s'}E_{\varepsilon'}v_{0}(k',b',\varepsilon';s',\mu')]$$
(3)

s.t.

$$\begin{aligned} k' &\geq (1-\delta)k\\ b' &\leq \zeta_l \theta_k k\\ D &= z \varepsilon F(k,n) - \omega(s,\mu)n + q(s,\mu)b' - b - [k' - (1-\delta)k] \geq 0\\ \mu' &= \Gamma(s,\mu) \end{aligned}$$

	Firm's F	^{>} roblem	

Downward Adjusting Firm:

$$v^{d}(k,b,\varepsilon;s,\mu) = \max_{n,k',b',D} [D + E_{s'}d_{s'}E_{\varepsilon'}v_{0}(k',b',\varepsilon';s',\mu')]$$
(4)

<□ > < @ > < E > < E > E のQ @

s.t.

$$\begin{aligned} k' \leq (1 - \delta)k \\ b' \leq \zeta_l \theta_k k \\ D = z \varepsilon F(k, n) - \omega(s, \mu)n + q(s, \mu)b' - b - \theta_k [k' - (1 - \delta)k] \geq 0 \\ \mu' = \Gamma(s, \mu) \end{aligned}$$

Household's Problem

Utility Function:

$$V^{h}(\lambda,\phi;s,\mu) = \max_{c,n^{h},\phi',\lambda'} [U(c,1-n^{h}) + \beta E_{s'}V^{h}(\lambda',\phi';s',\mu')]$$
(5)

s.t.

$$\begin{aligned} c + q\phi' + \int_{S} \rho_1 \lambda' (d[k' \times b' \times \varepsilon']) &\leq [\omega n^h + \phi + \int_{S} \rho_0 \lambda (d[k \times b \times \varepsilon])] \\ \mu' &= \Gamma(s, \mu) \end{aligned}$$

where: current share holding: λ , value of current share: ρ_0 ; where: matured bond: ϕ ; where: future share holding: λ' , value of current share: ρ_1 ; where: future bond: ϕ' , bond price: 1/q.

$$\Rightarrow C^{h}(\lambda,\phi;s,\mu); N^{h}(\lambda,\phi;s,\mu); \Phi^{h}(\lambda,\phi;s,\mu); \Lambda^{h}(k',b',\varepsilon';\lambda,\phi;s,\mu)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recursive Equilibrium

Market Clearing Conditions:

$$\begin{split} \Lambda^{h}(k',b',\varepsilon';\lambda,\phi;s,\mu) &= \mu'(k',b',\varepsilon';s,\mu) \\ N^{h}(\lambda,\phi;s,\mu) &= \int_{S} [N(k,\varepsilon;s,\mu)]\mu(d[k\times b\times\varepsilon]) \\ C^{h}(\lambda,\phi;s,\mu) &= \int_{S} [y-(1-\pi_{d})IC + \pi_{d}(\theta_{k}(1-\delta)k-k_{0})]\mu(d[k\times b\times\varepsilon]) \\ \Phi^{h}(\lambda,\phi;s,\mu) &= \int_{S} [B(k,b,\varepsilon;s,\mu)]\mu(d[k\times b\times\varepsilon]) \end{split}$$

Solving the Heterogeneous Model

Outline:

- Subsume household's problem into the firm's problem
 - replacing prices of labor, bond, output and discount factors
- Solve firm's decision rules on dividend, capital and debt
 - sorting firms to two types: constrained and unconstrained
 - constrained firms exposed to binding borrowing constraint
 - unconstrained firms permanently free from borrowing constrained

- Krusell-Smith algorithm to solve the problem numerically
 - nonlinear, iterative and computationally intensive
 - we do have better algorithm now

Subsume household's problem into the firm's problem

Step 1

• output price²:

$$p(s,\mu) = D_1 U(C, 1-N)$$
 (6)

• real wage: = MRS(c,n)

$$\omega(s,\mu) = \frac{D_2 U(C,1-N)}{D_1 U(C,1-N)} = \frac{D_2 U(C,1-N)}{p(s,\mu)}$$
(7)

• bond price: = expected gross real interest rate

$$q(s,\mu) = \frac{\beta E_s D_1 U(C', 1-N')}{D_1 U(C, 1-N)} = \frac{\beta E_s D_1 U(C', 1-N')}{p(s,\mu)}$$
(8)

• firm's discount factor: consistent with MRSc,n

$$d(s,\mu) = \beta D_1 U(C',1-N')/D_1 U(C,1-N)$$

Reformulate firm's problem

Step 2

• Expected value *before* the beginning of each period³:

$$V_{0}(k, b, \varepsilon; s, \mu) = (1 - \pi_{d})V(k, b, \varepsilon; s, \mu) + \pi_{d} \max_{n} p(s, \mu) \times [z\varepsilon F(k, n) - \omega(s, \mu)n + \theta_{k}(1 - \delta)k - b]$$
(9)

• Expected value *at* the beginning of each period:

$$V(k, b, \varepsilon; s, \mu) = \max_{n, k', b', D} [p(s, \mu)D + \beta E_{s'} E_{\varepsilon'} V_0(k', b', \varepsilon'; s', \mu')]$$
(10)

s.t.

 $D \ge 0$ $z\varepsilon F(k,n) - \omega n + qb' - b - J(k' - [1-\delta]k)[k' - (1-\delta)k] - D \ge 0 \quad (11)$ $\zeta_l \theta_k k - b' \ge 0 \quad (12)$

 $^{{}^{3}}J(x)=1$ if $x \ge 0$; $J(x) = \theta_{k}$ if x < 0;

Reformulate firm's problem

Step 2 (cont'd)

- Firms solve eq(9)-(12), taken $\{p, \omega, q\}$ as given
- Static labor choice:

$$z \varepsilon D_2 F(k, n^*) = \omega$$

• Profit:

$$\pi(k, b, \varepsilon; s, \mu) = z\varepsilon F(k, n^*) - \omega n^* - b$$
(13)

- Determination of [D, k', b']
 - most challenging objects
 - sort firms into two types
 - constrained firms: D=0 \leftrightarrow k' \rightarrow b'
 - unconstrained firms: k' unaffected by borrowing limits

ition

Evidence

Unconstrained Firms

- Multiplier on borrowing constraints are zero
 - \rightarrow sufficient capital to circumvent collateral constraint
 - \rightarrow capital choice independent of financial position
- Indifferent ${\rm b}/{\rm w}$ saving and dividends 4
 - \rightarrow indifferent about b'
 - \rightarrow mv of firm's retained earning (saving) = household (p)
- b affecting value only through profit $\pi(k, b, \varepsilon; s, \mu)$

$$W(k,b,arepsilon)=W(k,0,arepsilon)- extsf{pb}$$

• Minimum saving policy:

$$B^{w}(k,\varepsilon;s,\mu) = \min_{\{\varepsilon_{j}|\pi_{ij}>0} \min_{and \ s_{m}|\pi_{lm}^{s}>0\}} \widetilde{B}\Big(K^{w}(k,\varepsilon),\varepsilon_{j};s_{m},\Gamma(s,\mu)\Big),$$
$$\widetilde{B}(k,\varepsilon;s,\mu) = z\varepsilon F(k,N(k,\varepsilon)) - \omega N(k,\varepsilon) + q\min\Big\{B^{w}(k,\varepsilon;s,\mu),\zeta\theta_{k}k\Big\}$$
$$-\mathcal{J}\Big(K^{w}(k,\varepsilon) - (1-\delta)k\Big)\Big[K^{w}(k,\varepsilon) - (1-\delta)k\Big]$$

Unconstrained Firms

• Target capital stocks (k*)

$$k_{u}^{*}(\varepsilon) = \arg \max_{k'} \left[-\rho k' + \beta E_{s'} E_{\varepsilon'} W_{0}(k', \varepsilon'; s', \mu') \right]$$
(14)

$$k_d^*(\varepsilon) = \arg \max_{k'} \left[-p\theta_k k' + \beta E_{s'} E_{\varepsilon'} W_0(k', \varepsilon'; s', \mu') \right]$$
(15)

• Capital decision rule: (S, s) form

$$\mathcal{K}^{\mathsf{w}}(k,\varepsilon;s,\mu) = \begin{cases} k_u^*(\varepsilon;s,\mu), & \text{if } k_u^* > (1-\delta)k \\ (1-\delta)k, & \text{if } k_u^* < (1-\delta)k < k_d^* \\ k_d^*(\varepsilon;s,\mu), & \text{if } k_d^* < (1-\delta)k \end{cases} \tag{16}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $D^w(k, b, \varepsilon; s, \mu)$ is implied given the decision rule for k and b.

	<u> </u>		

Constrained Firms

• Value function of constraint firm:

$$V^{c}(k, b, \varepsilon; s, \mu) = max\{V^{u}(k, b, \varepsilon; s, \mu), V^{d}(k, b, \varepsilon; s, \mu)\}$$
(17)

- Given (k, ε) , find a cut-off debt level where
 - non-negative investment is possible
 - borrowing constraint is not violated
 - avoid negative dividends
- max b with $k' = (1 \delta)k$ and $D \ge 0$:

$$\hat{b} = q\zeta\theta_k k + z\varepsilon F(k, n^*) - \omega n^*$$

- $b > \hat{b} \rightarrow \text{downward adjustment: } V^{d}(k, b, \varepsilon; s, \mu)$
- $b < \hat{b} \rightarrow$ upward adjustment: $V^{u}(k, b, \varepsilon; s, \mu)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distinction b/w Unconstrained and Constrained Firms

- If a firm can:
 - adopt capital rule of unconstrained firm
 - hold debt level within saving function
 - pay non-negative dividend
- The firm is indistinguishable from unconstrained firm with (k, ε)

$$V(k, b, \varepsilon; s, \mu) = W(k, b, \varepsilon; s, \mu) , iff \quad D^{w}(k, b, \varepsilon; s, \mu) \ge 0$$

= $V^{c}(k, b, \varepsilon; s, \mu) , otherwise$ (18)

Solve the Problem (K-S algorithm)

Step 3:

- Computational challenges
 - presence of investment irreversibility
 - collateral constraint
 - firm level productivity shocks
- Curse of dimensionality:
 - individual state variable: $\{k, b, \varepsilon\}$
 - necessity to track their joint distribution: μ
 - aggregate state variable: $\{s, \mu\} = \{z, \zeta; \mu\}$
 - high-dimensional object
- Approximation of aggregate state
 - $\{s, \mu\} \rightarrow \{s, m, \nu_1, \nu_2\}$
 - m: unconditional mean of capital
 - ν_1, ν_2 : lagged indicators of credit crisis

Solve the Problem (K-S algorithm)

Step 3 (cont'd): In each iteration,

- solve value function in an inner loop
 - m' and p taken as given
 - interpolation of functions at knots of individual and aggregate states

- piece-wise polynomial cubic splines at off-knots points
- solve quantity and prices at outer loop
 - over 10,000 simulations
 - using value functions from inner loop
 - using actual distribution of firms
- update forecasting rules for m' and p

Heterogeneous response to macro shocks

Gertler and Gilchrist (1994):

- Heterogeneous response to monetary shock
 - Do financial constraints amplify aggregate response to monetary policy?
- Test using cross-sectional implication: constrained firms more responsive
 - proxy for financial constraints with size $^{\rm 5}$
- Sales + Inventory investment decline more for *small* firms following monetary tightening
- Small firms more bank dependent
 - large firms have more long-term debt + commercial paper
- Financial variables matters for cyclical response.

⁵Some recent works provide new/direct measurement. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle$

|--|--|--|--|--|

Heterogeneous response to macro shocks

Crouzet and Mehrotra (2017):

- Heterogeneous response to business cycles
- Test using micro-data.
- Some evidence small firms are more sensitive.
 - small firms are more bank-dependent and have more short-term debt
 - small firms also have more short-term assets
- Different cyclical responsiveness for monetary shocks vs. recessions.
 - unimportant for aggregate dynamics
 - weighting of firms matters
- Cyclical sensitivity not driven by financial variables.

Steady State

FIGURE 1. Steady state distribution: median productivity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	. .	-	
	Steady	/ State	

- Inverse relation $b/w\ firm's\ capital\ stocks\ and\ their\ financial\ savings$
 - unconstrained, older, wealthier firms \rightarrow minimum saving policy
 - constrained firms have lower capital or lower saving
 - no-constraint⁶ firms adopt b/k levels in proportion to k (assumed)
- Entrants with common $\Phi(\varepsilon)$ but low (b, k)
 - absence of borrowing constraint ightarrow jump to k^u with same arepsilon
 - with borrowing constraint \rightarrow gradual adjustment of k
 - borrow to grow at maximum = binding borrowing constraint
 - long survival = unconstrained firms
- Firm dynamics
 - firm size distribution is right-skewed
 - age $\uparrow \rightarrow$ employment growth \downarrow
 - · larger and older firms pay more dividends
 - "age effects"

⁶We identify no-constraint firms as a type that never faces borrowing constraint. $\Box = 220$

An Aside: Life-cycle of Firms (Age Effect)

Steady State: Misallocation

- Mis-allocated capital stock:
 - k of young (constrained) firms < k of old (unconstrained) firms

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- should be "=" absent financial frictions
- old firms do not carry excess capital
- young, small firms carry too little

Business Cycle: Benchmark vs. Full Economy

TABLE 2.	BUSINESS	CYCL	ES IN 7	THE FU	LL ECO	DNOMY
<i>x</i> =	= Y	C	Ι	N	K	r
mean(x)	0.578	0.485	0.094	0.333	1.323	0.042
σ_x/σ_Y	(2.046)	0.514	4.106	0.599	0.517	0.467
corr(x, Y)) 1.000	0.880	0.945	0.914	0.094	0.657

TABLE 3. BUSINESS CYCLES WITHOUT CREDIT SHOCKS

x =	Y	C	Ι	N	K	r
mean(x)	0.583	0.488	0.096	0.334	1.354	0.042
σ_x/σ_Y	(1.997)	0.503	3.860	0.562	0.485	0.453
corr(x, Y)	1.000	0.931	0.967	0.945	0.073	0.671

- Role of credit shocks (7 % of years):
 - reduce aggregate level of y, k and c
 - raise volatility of y, and relative volatility of c, i and n
 - weaken corr(X,y). X= [c, i, n]
 - real shocks dominates
 - more pronounced conditional on occurrence

Credit Crisis: Evidence

FIGURE 5. The Recent U.S. Recession

- Recent evidence in the crisis:
 - initial \uparrow in [c] and ultimate \downarrow in [y, n, i] unlike in RBC models
 - noncontemporaneous \downarrow across [y, n, i, z] unlike in RBC models
 - sharp \downarrow in [b] unlike in RBC models

・ロト ・聞ト ・ヨト ・ヨト

æ

Credit Crisis: Model

- An 88% drop in collateral value
 - 26% implied reduction in debt
 - expected duration: 3.2 yrs

Credit Crisis: Model

- Y \downarrow immediately by 1.5%
 - capital predetermined
 - labor \downarrow by 2.5% \Leftarrow reduction in expected return to investment \downarrow
- consumption: $\uparrow \rightarrow \downarrow$
 - initial \uparrow : due to \downarrow in return to saving
 - subsequent \downarrow : due to \downarrow in n, y, w (as misallocation \uparrow)
- unconstrained firms \rightarrow constrained firms
 - 17% constrained \rightarrow 43% constrained
 - young firms: slower to catch up with their productivity

• TFP \downarrow : endogenous !

Credit Crisis: Misallocation

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Credit Crisis: Misallocation

- # of medium-size firms \downarrow ; small firms \uparrow and very largest firms \uparrow
 - medium firm: unconstrained \rightarrow constrained
 - small firm: takes longer to grow
 - largest firm: unconstrained, gain from \downarrow r
- Increased efficiency from small firms
 - widened gap b/w expected investment return and interest rate
 - coexistence of \uparrow in MPK and \downarrow of ex post r
 - coexistence of \uparrow in MPK of SME and \downarrow of MPK of largest firms
- Reminiscent the finding of Eisfeldt and Rampini (06')
 - dispersion in returns to capital ↑ in recession;

 - level of capital reallocation \downarrow in recession
- Disproportionately negative impact on smaller and young firms

Wrap Up									
	Wrap Up	Wrap Up							

- Firm dynamics
 - sensitivity to financial variables
 - heterogeneous response to shocks
 - "age effects" + "size effects"
- Heterogeneous firm DSGE model
 - persistent shock to [z, ζ; ε]
 - heterogeneity on [k, b, ε]
 - real frictions: [partial irreversibility]
 - financial frictions: [borrowing constraint]
- Credit shocks qualitatively different from TFP shocks
 - gradual decline of output
 - initial rise in consumption
 - severe drop in investment, employment and GDP
 - endogenous decline of TFP
 - distribution of firms and misallocation of resources

Macro Models with Financial Shock

- Representative agent models:
 - Jermann and Quadrini (2012, AER)
 - Kiyotaki and Moore (2012)
- Heterogeneous agent models:
 - Khan and Thomas (2013, JPE)
 - Buera and Moll (2013, AEJ: Macro)
- Heterogeneous agent models with default:
 - Miao and Wang (2010)
 - Gomes, Jermann and Schmid (2016, AER)
 - Arellano, Bai and Kehoe (2016)
- Heterogeneous agent models with default and endogenous entry-exit:
 - Khan, Senga and Thomas (2016)
 - Ottonello and Winberry (2018, R&R at ECMA)
 - Gomes and Schimid (forthcoming, JF)

Firm Dynamic Models

- Productivity and Firm Dynamics
 - Hopenhayn (1992, ECMA)
 - Hopenhayn and Rogerson (1993, JPE)
 - Clementi and Palazzo (2016, AEJ:Macro)
- Investment and Firm Dynamics:
 - Caballero and Engel (1999, ECMA)
 - Khan and Thomas (2008, ECMA)
 - Winberry (2018, RnR at AER)
- Financial Friction and Firm Dynamics:
 - Cooley and Quadrini (2001, AER)
 - Gomes (2001, AER)
 - Clementi and Hopenhayn (2006, QJE)
 - Khan and Thomas (2013, JPE)
 - Ottonello and Winberry (2018, R&R at ECMA)