# Endogenous Leverage and Belief Heterogeneity 

Ding Dong

Oct 2021, PHBS

## Leverage and Price Cycles



Figure: Pro-cyclical Asset Price and Leverage Dynamics

Geanakoplos, J. (2010). The leverage cycle. NBER macroeconomics annual, 24(1), 1-66.

## Highlight

- leverage cycle arising from belief heterogeneity
- optimistic agents: leverage to invest in asset (collateral)
- pessimistic agents: lend (value collateral less)
- $\rightarrow$ endogenous constraint: leverage and price
- equilibrium leverage too high in boom and too low in recession
- two-period model:
- endogenous loan contract
- asset price rises with leverage
- equilibrium repayment ensures no default
- three-period model:
- a maturity mismatch problem
- leverage cycle


## Two-period Model

- time: discrete, two period $\mathrm{t}=0,1$, with two states in last period: $\operatorname{good}(\mathrm{G})$ or $\operatorname{bad}(\mathrm{B})$.
- asset: a risky asset, with
- no payoff in period 0;
- payoff 1 at $G$ state
- payoff 0.2 at B state
- risky-free interest rate is zero
- investors: risk-neutral with heterogeneous belief, indexed by $h$ $\in(0,1)$
- each endowed with 1 unit of cash and 1 unit of asset
- can trade their endowed asset at period 0
- $h$ thinks probability of good is $h$.
- h follows a uniform distribution over $(0,1)$


## Natural Buyer

$\left[\begin{array}{c}\mathrm{h}=1 \\ \mathrm{Natural} \text { buyers } \\ \mathrm{h}=\mathrm{b}\end{array}\right.$

## public

$\mathrm{h}=0$
Figure: Natural buyers at period 0

## Scenario I: Financial Autarky

- price of asset at period 0 as $p$.
- optimistic agents with belief above a threshold $\hat{h}$ will buy and others will sell.

$$
h * 1+(1-h) * 0.2>p \quad \text { or } \quad h>\frac{p-0.2}{0.8} \equiv \hat{h}
$$

- market clearing condition, $(1-\hat{h}) * 1=\hat{h} p$

$$
1-\frac{p-0.2}{0.8}=\frac{p-0.2}{0.8} p
$$

- equilibrium price of $p=2 / 3$ and $\hat{h}=0.6$.


## Scenario II: Exogenous Leverage

non-contingent contract: promises $=\varphi$ in both states.

- repayment under two states are

$$
\begin{aligned}
& \min \{\varphi, 1\} \quad \text { if state is good } \\
& \min \{\varphi, 0.2\} \quad \text { if state is bad }
\end{aligned}
$$

- no default: a natural limit by setting $\varphi=0.2$
- marginal buyer as $\tilde{h}$ :

$$
\underbrace{\tilde{h} *(1-0.2)+(1-\tilde{h}) * 0}_{\text {expected pay-off }}=\underbrace{p-0.2}_{\text {equity }}, \Leftrightarrow \tilde{h}=\frac{p-0.2}{0.8} \text {, }
$$

- market clearing condition that $(1-\tilde{h}) * 1+\varphi=\tilde{h} p$

$$
p=\frac{(1-\tilde{h}) * 1+0.2}{\tilde{h}}
$$

- equilibrium price of $p=0.75$ and $\tilde{h}=0.69$.


## Scenario III: Endogenous Leverage

- loan contract, characterized by a pair of (promise, collateral)
- e.g. ( $\varphi_{j}=0.1,0.5$ ) promised to repay 0.1 at each state, otherwise lender seizes 0.5 unit of asset (collateral)
- risk-less
- focus on contract backed by collateral of one unit of asset
- homogeneity of degree one
- e.g. $\left(\varphi_{j}=0.1,0.5\right) \sim\left(\varphi_{j}=0.2,1\right)$
- state-dependent (actual) repayment, each unit of loan contract can be traded at price of $\pi_{j}$,
- e.g., one unit of loan contract $\varphi_{j} \leq 0.2$ is simply priced at one over risk-free rate


## Scenario III: Endogenous Leverage

- optimal contract: one with promise $=0.2$.
- off-equilibrium path (non-traded contract):
- if $\varphi_{j} \leq 0.2, \pi_{j}=1$
- if $\varphi_{j} \in(0.2,1), \pi_{j}=\tilde{h} \varphi_{j}+(1-\tilde{h}) 0.2$
- if $\varphi_{j} \geq 1, \pi_{j}=\tilde{h} 1+(1-\tilde{h}) 0.2$
- why only the contract $\varphi_{j}=0.2$ is chosen
- benefit of higher $\varphi_{j}$ : get more funding (lenders' belief)
- cost: repaying more (borrowers' belief).
- e.g., by increasing $\varphi_{j}$ from 0.2 to 0.3 , the borrowers $h_{j}>\tilde{h}$ get $0.1 \tilde{h}$ more at the beginning, but have to repay $0.1 h_{j}$ more in his expectation.


## Three-period Model

- time: discrete, three period $t=0,1,2$, with two states in period 1 and 2: $\operatorname{good}(G)$ or $\operatorname{bad}(B)$.
- asset: a risky asset, with
- no payoff in period 0 and 1
- possible realization at period 2: GG, GB, BG, BB
- payoff at state GG, GB, BG: 1
- payoff at state BB: 0.2
- risky-free interest rate is zero
- investors: risk-neutral with heterogeneous belief, indexed by $h$ $\in(0,1)$
- each endowed with 1 unit of cash and 1 unit of asset
- can trade their endowed asset at period 0 and 1
- $h$ thinks probability of good is h, i.i.d. across states
- h follows a uniform distribution over $(0,1)$


## Equilibrium

- loan contracts: one-period loans.
- repayment to period- 0 debt:

$$
\begin{gathered}
\min \left\{\varphi_{0}, p_{G}\right\} \quad \text { if state is good } \\
\min \left\{\varphi_{0}, p_{B}\right\} \quad \text { if state is bad }
\end{gathered}
$$

- equilibrium contract: bears no default at each period/state.
- at period $0, \varphi_{0}=p_{B}$
- at period 1 if realized state is $\mathrm{G}, \varphi_{G}=1$
- at period 1 if realized state is $B, \varphi_{B}=0.2$
- task: solve the allocation $\left\{p_{0}, \hat{h_{0}}, p_{B}, \hat{h_{B}}\right\}$
- $\hat{h_{0}}$ and $\hat{h_{B}}$ :marginal buyer at period 0 and state B at period 1 .
- $p_{0}$ and $p_{B}$ : asset price at period 0 and state $B$ at period 1 .


## Marginal Buyer



Figure: Marginal buyers at period 0 and period 1 (state $B$ )

## Equilibrium

The following equilibrium conditions solves $\left\{p_{0}, \hat{h_{0}}, p_{B}, \hat{h_{B}}\right\}$ :

- Euler equation at date 1: The marginal buyer in state $B$ at period 1 must be indifferent $b / w$ buying or not:

$$
\underbrace{\hat{h_{B}} *\left(1-\varphi_{B}\right)+\left(1-\hat{h_{B}}\right) * 0}_{\text {expected return }}=\underbrace{p_{B}-\varphi_{B}}_{\text {equity }}
$$

- Euler equation: The marginal buyer at period 0 must be indifferent $\mathrm{b} / \mathrm{w}$ buying or not:
$\underbrace{\frac{\hat{h_{0}} *\left(1-\varphi_{0}\right)+\left(1-\hat{h_{0}}\right) * 0}{p_{0}-\varphi_{0}}}_{\text {expected return of buying }}=\underbrace{\hat{h_{0}} * 1}_{G-\text { state }}+\underbrace{\left(1-\hat{h_{0}}\right) \frac{\hat{h_{0}}\left(1-\varphi_{B}\right)}{p_{B}-\varphi_{B}}}_{B-\text { state }}$


## Equilibrium

- market clearing condition at period 0 :

$$
\underbrace{\left(1-\hat{h_{0}}\right) * 1}_{\text {internal fund }}+\underbrace{\varphi_{0}}_{\text {debt }}=\underbrace{\hat{h_{0} p_{0}}}_{\text {asset }} \rightarrow \quad p_{0}=\frac{\left(1-\hat{h_{0}}\right) * 1+p_{B}}{\hat{h_{0}}}
$$

- market clearing condition in state $B$ at period 1 :

$$
\underbrace{\left(\hat{h_{0}}-\hat{h_{B}}\right) * \frac{1}{\hat{h_{0}}}}_{\text {internal fund }}+\underbrace{\varphi_{B}}_{\text {debt }}=\underbrace{\frac{\hat{h_{B}}}{\hat{h_{0}}} p_{B}}_{\text {asset }} \rightarrow \quad p_{B}=\frac{\hat{h_{0}}\left(1+\varphi_{B}\right)-\hat{h_{B}}}{\hat{h_{B}}}
$$

## Price and Leverage Cycles

- price and allocation:
- period $0: \hat{h_{0}}=0.87$ and $p_{0}=0.95$;
- state $G$ at period $1, \hat{h_{G}}=1$ and $p_{G}=1$.
- state B at period $1, \hat{h_{B}}=0.61$ and $p_{B}=0.69$.
- three forces accounting for the crash in state $B$ at period 1.
- fundamental: the realization of bad news.
- loss of natural buyers: leveraged buyers at period 0 go bankrupt
- deleveraging process: the margin increases from 0.27 to 0.71 ; the leverage decreases from 3.6 to 1.4 .

Simsek, A. (2013). Belief disagreements and collateral constraints. Econometrica, 81(1), 1-53.

## Highlight

- Geanakoplos (2010): belief disagreement $\leftrightarrow$ debt contract
- optimistic agents: leverage to invest in asset (collateral)
- pessimistic agents: lend (but value collateral less)
- endogenous debt contract: leverage and price
- equilibrium leverage too high in boom and too low in recession
- nature of debt contract: asymmetric payoff
- default only in bad states
- more sensitive to probability of bad states
- this paper: nature of belief disagreement $\leftrightarrow$ debt contract
- "what investors disagree about matters"
- disagreement on 'bad state' is disciplined
- disagreement on 'good state' is not


## What's New

- Geanakoplos (2010):
- disagreement is concentrated on bad states ("BB")
- belief disagreement $\uparrow$ margin (asset price $\downarrow$ )
- key assumption: two continuation states
- equilibrium loan contract is risk-less
- this paper:
- nature of belief disagreement matters for asset price
- e.g. belief disagreement about bad states $\uparrow$ margin ( $\downarrow$ asset price)
- e.g. belief disagreement about good states $\uparrow$ asset price
- more than two states
- equilibrium loan contract can be risky


## Two-period Model

- time: discrete, two period $t=0,1$, with a continuum of states in last period: $s \in\left[s^{\min }, s^{\text {max }}\right]$
- asset: a risky asset (owned by outsider initially), with
- no payoff in period 0;
- final payoff: $s$ dollar in state $s$
- risky-free interest rate $=0$
- investors: risk-neutral with heterogeneous belief,

$$
E_{1}[s]>E_{0}[s]
$$

optimists with belief $F_{1}$ and cash $n_{1}$ pessimists with belief $F_{0}$ and cash $n_{0}$

- optimists want to borrow cash and buy asset


## Borrowing Contract

- loan contract, characterized by (promise, collateral)

$$
\beta \equiv(\underbrace{\varphi(s)}_{\text {promise }}, \underbrace{\alpha}_{\text {asset }}, \underbrace{\gamma}_{\text {cash }})
$$

- repayment

$$
\min \{\varphi(s), \alpha s+\gamma\}
$$

- focus on simple debt contract:

$$
B \equiv(\varphi(s)=\varphi, \alpha=1, \gamma=0)
$$

- price of one unit of contract:

$$
q(B)=E_{0}[\min (s, \varphi)]
$$

## Principle-Agent Problem

- optimist solves

$$
\max _{\left(a_{1}, \varphi\right) \in \mathbb{R}_{+}^{2}} a_{1} E_{1}[s]-a_{1} E_{1}[\min (s, \varphi)]
$$

s.t. participation constraint + budget constraint

$$
a_{1} p=n_{1}+a_{1} E_{0}[\min (s, \varphi)]
$$

and some regular conditions ensuring $p \in\left(E_{0}[s], E_{1}[s]\right)$.

- trade-offs on higher $\varphi$ :
- higher loan size: $\varphi \uparrow \rightarrow E_{0}[\min (s, \varphi)] \uparrow$
- higher risk: $\varphi \uparrow \rightarrow$ default threshold $\uparrow$


## Principle-Agent Problem (transformed)

- optimist solves

$$
\max _{(\varphi) \in \mathbb{R}_{+}^{2}} n_{1} R_{1}^{L}(\varphi)
$$

where $R_{1}^{L}(\varphi)$ is expected return rate on equity

$$
\begin{equation*}
R_{1}^{L}(\varphi) \equiv \frac{E_{1}[s]-E_{1}[\min (s, \varphi)]}{p-E_{0}[\min (s, \varphi)]} \tag{1}
\end{equation*}
$$

- breaking down the return:
- unleveraged return ( $>1 \rightarrow$ pushing $\varphi \uparrow$ )

$$
R_{1}^{U}=\frac{E_{1}(s)}{p}
$$

- perceived interest rate $\left(\frac{\partial r_{1}^{\text {per }}(\varphi)}{\partial \varphi}>0 \rightarrow\right.$ pushing $\left.\varphi \downarrow\right)$

$$
r_{1}^{p e r}(\varphi)=\frac{E_{1}[\min (s, \varphi)]}{E_{0}[\min (s, \varphi)]}-1
$$

## Optimal Loan Contract

- optimal loan contract $\varphi=\bar{s}$ given price $p$ :

$$
\begin{equation*}
p^{\mathrm{opt}}(\bar{s})=F_{0}(\bar{s}) E_{0}[s \mid s<\bar{s}]+\left(1-F_{0}(\bar{s})\right) E_{1}[s \mid s \geq \bar{s}] \tag{2}
\end{equation*}
$$

- asset priced with a mixture of optimistic and pessimistic belief
- pessimistic belief:
- assess default probability $\left(F_{0}(\bar{s})\right)$
- value of asset conditional on default ( $E_{0}[s \mid s<\bar{s}]$ )
- optimistic belief:
- value of asset conditional on no-default ( $\left.E_{1}[s \mid s \geq \bar{s}]\right)$
- asymmetric disciplining effect of optimism
- optimism about prob of default states doesn't affect asset price
- optimism about prob of non-default states increases asset price


## Optimality Curve





## Asset Market Clearing

- budget constraint implies a market clearing curve:

$$
a_{1}=\frac{n_{1}}{p^{\mathrm{mc}}(\bar{s})-E_{0}[\min (s, \bar{s})]}=1
$$

which is equivalent to

$$
\begin{equation*}
p^{\mathrm{mc}}(\bar{s})=n_{1}+E_{0}[\min (s, \bar{s})] \tag{3}
\end{equation*}
$$

- equilibrium contract and price $\{\bar{s}, p\}$ pinned down by

$$
p^{\mathrm{mc}}(\bar{s})=p^{\mathrm{opt}}(\bar{s})
$$

## Equilibrium



## Nature of Belief Disagreement: Example



Figure: What investors disagree about matters for asset price.

## Reference

- Geanakoplos, J. (2010). The leverage cycle. NBER macroeconomics annual, 24(1), 1-66.
- Simsek, A. (2013). Belief disagreements and collateral constraints. Econometrica, 81(1), 1-53.
- (review paper) Fostel, A., \& Geanakoplos, J. (2014). Endogenous collateral constraints and the leverage cycle. Annu. Rev. Econ., 6(1), 771-799.
- (review paper) Simsek, A. (2021). The macroeconomics of financial speculation. Annual Review of Economics, 13.
- (review paper) Xiong, W. (2013). Bubbles, crises, and heterogeneous beliefs (No. w18905). National Bureau of Economic Research.

