	VAR	Basic Model	Full Model	Conclusion	Appendix

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

Matteo lacoviello, The American Economic Review, 2005

Department of Economics HKUST

Ding Dong

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

イロト 不得 とくほと くほとう ほ

"Deteriorating credit market conditions, [...], are not just passive reflections of a declining economy, but are themselves a major factor depressing economic activity." —Irving Fisher, Debt-Deflation Theory of the Great Depression

"The population is not distributed between debtors and creditors randomly. Debtors have borrowed for good reasons, most of which indicate a high marginal propensity to spend from liquid resources they can command[...]. Business borrowers typically have a strong propensity to hold physical capital [...]. Their desired portfolios contain more capital than their net worth."

-James Tobin, Asset Accumulation and Economic Activity

イロン 不同 とくほう イロン

Introduction				
Literatu	ire			

- Theory¹
 - Partial Equilibrium: Fisher(1933); Tobin (1980)
 - General Equilibrium: BG (1989); KM (1997); Calstrom and Fuerst (1997); BGG (1999) etc.
 - Empirical Studies
 - Empirical Studies: Hubbard (1998);
 - Financial Constraints-Household: Zeldes (1989); Jappelli and Pagano (1989); Campbell and Mankiw (1989); Carrolll and Dunn (1977).
 - Explaining Business Cycles: none
 - Monetary Policy Analysis: none

¹For more recent surveys: Quadrini (2011); Gertler and Gilchrist (2018) = $\circ \circ \circ$

Matteo lacoviello, The American Economic Review, 2005

- Variant of BGG (1999) Set-up
 - New-Keynesian framework of Financial Accelerator
- Collateral Constraints
 - Large proportion of borrowing is secured by real estate.
 - Channels of housing market are not well understood.
- Nominal Debt
 - Debt contracts are in nominal terms in low-inflation countries.
 - The macroeconomic implications are not well understood.
- Capture Business Cycle facts
- Explain Interaction b/w Asset Prices and Real Activity

Introduction VAR Basic Model Full Model Implication Conclusion Appendix

Intuition: A Positive Demand Shock

- A Positive Demand Shock
 - Consumption Goods Prices \uparrow
 - Asset Prices ↑
- Asset Prices ↑
 - Borrowing Capacity ↑
 - Spending and Investment ↑
- Consumption Goods Prices ↑
 - Real value of outstanding debt obligation
 - Net worth of borrowers \uparrow
 - MPC of borrowers > MPC of lenders
 - Net effect on demand (consumption): +
 - Amplification mechanism on demand shock
- \Rightarrow Financial Accelerator of demand shocks.

-

Intuition: A Negative Supply Shock

- A Negative Supply Shock
 - Consumption Goods Prices \uparrow
 - Asset Prices ↑
- Asset Prices ↑
 - Borrowing Capacity ↑
 - \blacksquare Spending and Investment \uparrow
- Consumption Goods Prices ↑
 - Real value of outstanding debt obligation
 - Net worth of borrowers \uparrow
 - MPC of borrowers > MPC of lenders
 - Net effect on demand (consumption): +
 - Mitigation mechanism on supply shock
- \Rightarrow Financial Decelerator of supply shocks.

Introduction			

Outline

- Introduction
 - Literature Review
 - Intuition
- VAR Evidence
- Basic Model
- Full Model
 - Heterogeneous Households
 - Variable capital investment
- Monetary Policy Experiment
- Conclusion

3

・ロン ・四 ・ ・ ヨン ・ ヨン

VAR			

VAR Evidence

FIGURE 1. VAR EVIDENCE, UNITED STATES

Matteo lacoviello, The American Economic Review, 2005

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

э

VAR			

VAR Evidence

A good model has to deliver:

- If interest rate (R) \uparrow
 - Nominal prices $(\pi) \downarrow$
 - Real housing prices $(q) \downarrow$
 - Output $(Y) \downarrow$
- If inflation $(\pi) \uparrow$
 - Real housing prices $(q) \downarrow$
 - Output $(Y) \downarrow (small)$
- Positive co-movement of asset prices (q) and output (Y)
 - to Asset price shocks
 - to Output shocks

3

	Basic Model		

Basic Model

Homogeneous Household

- Infinitely lived, Patient, and Homogeneous²
- Utility: consumption, housing service, leisure, real balance

$$E_0 \sum_{t=0}^{\infty} \beta^t [\ln c'_t + j \ln h'_t - (L'_t)^{\eta} / \eta + \chi \ln(M'_t / P_t)]$$

β: discount factor of household
 c'_t, h'_t, L'_t: consumption, house holding, labor supply
 M'_t/P_t: Real money balance

Matteo lacoviello, The American Economic Review, 2005

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

-

Homogeneous Household

Budget Constraint (Nominal):

 $P_{t}c_{t}' + Q_{t}h_{t}' - B_{t}' + M_{t}' = W_{t}'L_{t}' + Q_{t}h_{t-1}' - B_{t-1}'R_{t-1} + M_{t-1}' + P_{t}F_{t} + P_{t}T_{t}'$

- B'_t : the amount household borrow
- *Q_t*: Nominal housing price
- *F_t*: Real lump-sum profit from retailers
- T'_t : Net transfer from central bank
- Budget Constraint (Real):

 $c_t' + q_t h_t' - b_t' + \Delta M_t' / P_t = w_t' L_t' + q_t h_{t-1}' - b_{t-1}' R_{t-1} / \pi_t + F_t + T_t'$ (1)

- $q'_t = Q'_t / P_t$: Real housing price
- $b'_t = B'_t / P_t$: Real net borrowing

-

< ロ > < 同 > < 回 > < 回 > < □ > <

Homogeneous Household

Household's Problem:

$$max \quad E_0 \sum_{t=0}^{\infty} \beta^t [\ln c_t' + j \ln h_t' - (L_t')^{\eta} / \eta + \chi \ln(M_t' / P_t)]$$

s.t.
$$c'_t + q_t \Delta h'_t - b'_t + \Delta M'_t / P_t = w'_t L'_t - b'_{t-1} R_{t-1} / \pi_t + F_t + T'_t$$

F.O.C.s:

w.r.t.
$$c'_t: \quad \frac{1}{c'_t} = \beta E_t \frac{R_t}{\pi_{t+1} c'_{t+1}}$$
 (2)

w.r.t.
$$L'_t$$
: $w'_t = (L'_t)^{\eta - 1} c'_t$ (3)

w.r.t.
$$h'_t$$
: $\frac{1}{c'_t} = \frac{1}{q_t} \left[\frac{j}{h'_t} + \beta E_t q_{t+1} \frac{1}{c'_{t+1}} \right]$ (4)

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

э

イロン イロン イヨン イヨン

	Basic Model		

Entrepreneurs

- Produce intermediate goods using real estate and labor;
- Sell intermediate goods to retailers at wholesale price P^w_t.

$$max \quad E_0 \sum_{t=0}^{\infty} \gamma^t [\ln c_t], \quad \gamma < \beta$$

Subject to:

$$Y_t = A(h_{t-1})^{\nu} (L_t)^{1-\nu}$$
(5)

$$Y_t P_t^w / P_t + b_t = w_t' L_t + q_t \Delta h_t + b_{t-1} R_{t-1} / \pi_t + c_t$$
 (3) (6)

$$b_t R_t \leq m E_t q_{t+1} h_t \pi_{t+1}$$
 (4)

 ${}^{3}Y_{t}P_{t}^{w} + B_{t} + Q_{t}h_{t-1} = W_{t}^{\prime}L_{t} + Q_{t}h_{t} + B_{t-1}R_{t-1} + P_{t}c_{t} \quad (\text{nominal budget})$ ${}^{4}B_{t}R_{t} \leq mE_{t}Q_{t+1}h_{t} \quad (\text{nominal credit constraint}) = 0 \quad \text{and} \quad \text{a$

	Basic Model		

Entrepreneurs

F.O.C. w.r.t.: detail

$$c_t: \quad \frac{1}{c_t} = \gamma E_t \frac{R_t}{\pi_{t+1} c_{t+1}} + \lambda_t R_t \tag{7}$$

$$h_{t}: \quad \frac{1}{c_{t}} = \frac{1}{q_{t}} E_{t} \underbrace{\left[\left(\underbrace{vY_{t+1}}_{h_{t}}P_{t+1}^{w} + Q_{t+1}\right)\frac{1}{P_{t}}\frac{1}{c_{t+1}}\gamma}_{\text{return to housing investment}} + \underbrace{\lambda_{t}mq_{t+1}\pi_{t+1}\right]}_{\text{liquidity premium}} \quad (8)$$

$$L_{t}: \quad \underbrace{w_{t}'}_{\text{MC (real)}} = \underbrace{\left(1-\upsilon\right)\frac{Y_{t}}{L_{t}}\frac{P_{t}^{w}}{P_{t}}}_{\text{MR (Real)}} \quad (9)$$

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUS I

・ロト ・回ト ・ヨト ・ヨト … ヨ

Entrepreneurs: Credit Constraint

- Equation (2): $\frac{1}{c'_t} = \beta E_t \frac{R_t}{\pi_{t+1}c'_{t+1}}$ \rightarrow In the steady state: $1/\beta = R$
- Equation (7): $\frac{1}{c_t} = \gamma E_t \frac{R_t}{\pi_{t+1}c_{t+1}} + \lambda_t R_t$ → In the steady state: $\lambda = (\beta - \gamma)/c$

 \blacksquare By assumption entrepreneurs are less patient than households. $\Leftrightarrow \gamma < \beta$

■
$$\Rightarrow \lambda = (\beta - \gamma)/c > 0$$

 \Leftrightarrow Credit constraint is binding around steady state:

$$b_t R_t = m E_t q_{t+1} h_t \pi_{t+1} \tag{10}$$

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

・ロン ・回 と ・ヨン ・ヨン

		Basic Model		
Retailer	S			

- A continuum of unit mass, indexed by z.
- Buy intermediate goods from entrepreneurs at price P^w_t.
- Transform the goods into final goods $Y_t(z)$ at price $P_t(z)$.
- Subject to monopolistic competition and price rigidity: In each period, only $1 - \theta$ of retailers can reset their prices.
- Final Goods⁵: $Y_t^f = [\int_0^1 Y_t(z)^{\epsilon 1/\epsilon} dz]^{\epsilon/\epsilon 1}$, $\epsilon > 1$

• Price index:
$$P_t = [\int_0^1 P_t(z)^{\epsilon-1} dz]^{1/\epsilon-1}$$

• Individual demand curve: $Y_t(z) = [P_t(z)/P_t]^{-\epsilon}Y_t^f$

Retailer's Problem: maximize *expected discounted profit* subject to: *downward sloping demand curve* (detail)

⁵Around steady state $Y_t^f = Y_t$. We utilize this condition in the analysis. Matteo lacoviello, *The American Economic Review*, 2005

	VAR	Basic Model	Full Model	Conclusion	
Retailers					
O	ptimal	Pricing Equat	tion $[P_t^*(z)]$:		

$$\underbrace{\sum_{k=0}^{\infty} \theta^{k} E_{t}[\beta \frac{c_{t}'}{c_{t+k}'} \frac{P_{t}^{*}(z)}{P_{t+k}} Y_{t+k}^{*}(z)]}_{\text{Expected discounted marginal revenue}} = \underbrace{\sum_{k=0}^{\infty} \theta^{k} E_{t}[\beta \frac{c_{t}'}{c_{t+k}'} \frac{X}{X_{t+k}} Y_{t+k}^{*}(z)]}_{\text{Expected discounted marginal cost}}$$
(11)

$$X_{t}: \text{ the markup defined as } X_{t} = P_{t}/P_{t}^{w}; X = \epsilon/\epsilon - 1$$

 Y_{t+k}^* : expected demand defined as $Y_{t+k}^* = [P_t^*(z)/P_{t+k}]^{-\epsilon}Y_{t+k}$ • Aggregate Price Evolution:

$$P_t = [\theta P_{t-1}^{1-\epsilon} + (1-\theta)(P_t^*)^{1-\epsilon}]^{1/(1-\epsilon)}$$
(12)

• Combining linearized equation (11) and (12) will yield:

$$\hat{\pi} = \beta E_t \pi_{t+1} - \kappa \hat{X}_t$$

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

Central Bank

The central bank implement a Taylor-type interest rate rule:

$$\ln R_t = r_R \ln R_{t-1} + (1 - r_R)[(1 + r_\pi) \ln \pi_{t-1} + r_y \ln(\frac{Y_{t-1}}{Y}) + \ln \bar{r}r] + \epsilon_{R,t}$$
(13)
where rr_t represents real interest rate defined as $rr_t \equiv R_t / E_t \pi_{t+1}$.

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

э

・ロト ・回ト ・ヨト ・ヨト

Market Clearing Conditions

There are four markets to be cleared in this economy:

Labor market:

$$L_t = L'_t$$

Real Estate market:

$$h_t + h'_t = H$$

Goods market:

$$c_t + c'_t = Y_t$$

Credit market:

 $b_t + b'_t = 0$

steady state

linearization

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

3

・ロト ・回ト ・ヨト ・ヨト

Introduction VAR Basic Model Full Model Implication Conclusion Ap

Monetary Policy: Transmission Mechanism

Given a negative monetary shock (interest rate \uparrow):

 \blacksquare Interest rate channel: i $\uparrow \Rightarrow$ rr $\uparrow \Rightarrow$ c' $\downarrow \Rightarrow$ y \downarrow

$$\hat{c'_t} = E_t c'_{t+1} - r \hat{r}_t \quad (L2)$$

 $\blacksquare \text{ Housing price channel: } q \downarrow \Rightarrow b \downarrow \Rightarrow h \downarrow \Rightarrow y \downarrow$

$$\hat{q}_{t} = \gamma_{e} E_{t} \hat{q_{t+1}} + (1 - \gamma_{e}) E_{t} (\hat{Y_{t+1}} - \hat{q_{t}} - \hat{X_{t+1}}) - m\beta \hat{rr_{t}} - (1 - m\beta) E_{t} \Delta \hat{c_{t+1}} \quad (L4)$$

$$\hat{q}_{t} = \hat{c}'_{t} + \iota \hat{h}_{t} + \beta E_{t} q_{t+1}^{2} - \beta E_{t} c'_{t+1} \quad (L5)$$
$$\hat{b}_{t} = E_{t} q_{t+1}^{2} + \hat{h}_{t} - r \hat{r}_{t} \quad (L6)$$

Debt Deflation channel:

price level $\downarrow \Rightarrow$ cost of debt service $\uparrow \Rightarrow c$ and $h \downarrow \Rightarrow \mathsf{y} \downarrow$

Matteo lacoviello, The American Economic Review, 2005

-

Monetary Policy: Transmission Mechanism

COMPARISON BETWEEN ALTERNATIVE MODELS

Matteo lacoviello, The American Economic Review, 2005

	Full Model		

Full Model Dasic

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

Heterogeneous Households: Impatient Household

Impatient Household's Problem:

$$\max \quad E_0 \sum_{t=0}^{\infty} \beta''^t [\ln c_t'' + j \ln h_t'' - (L_t'')^{\eta} / \eta + \chi \ln(M_t'' / P_t)] \quad (\beta'' < \beta)$$

s.t.
$$c_t'' + q_t \Delta h_t'' - b_{t-1}'' R_{t-1} / \pi_t + \Delta M_t'' / P_t + \xi_{h,t} = w_t'' L_t'' + b_t'' + T_t''$$

where $\xi_{h,t}$ denotes the housing adjustment cost⁶. And

$$b_t'' R_t \leq m'' E_t(q_{t+1}h_t''\pi_{t+1})$$

which is a typical lending constraint in mortgage market. m": the degree of collateralizability. $m'' \rightarrow 0$: Households are excluded from financial markets.

 ${}^{6}\xi_{h,t} = \phi_h(\Delta h''_t/h''_{t-1})^2 q_t h''_{t-1}/2$. This adjustment cost applies to patient household as well.

Matteo lacoviello, The American Economic Review, 2005

	Full Model		

Entrepreneurs

- Produce intermediate goods using real estate, capital and labor;
- Adjustment cost of capital⁷ and housing⁸ investment.

$$max \quad E_0 \sum_{t=0}^{\infty} \gamma^t [\ln c_t], \quad \gamma < \beta$$

Subject to:

$$Y_{t} = A_{t} K_{t-1}^{\mu} h_{t-1}^{\upsilon} (L_{t}')^{\alpha(1-\mu-\upsilon)} (L_{t}'')^{(1-\alpha)(1-\mu-\upsilon)}$$
(14)

$$\frac{Y_t}{X_t} + b_t = w_t' L_t' + w_t'' L_t'' + q_t \Delta h_t + b_{t-1} R_{t-1} / \pi_t + c_t + I_t + \xi_{e,t} + \xi_{K,t}$$
(15)

$$b_t R_t \leq m E_t q_{t+1} h_t \pi_{t+1}$$

⁷Capital adjustment cost: $\xi_{K,t} = \Psi_t (I_t/K_{t-1} - \delta)^2 K_{t-1}/(2\delta)$. ⁸Housing adjustment cost: $\xi_{e,t} = \phi_e (\Delta h_t/h_{t-1})^2 q_t h_{t-1}/2$. Matteo lacoviello, *The American Economic Review*, 2005

Introduction VAR Basic Model **Full Model** Implication Conclusion Appendix

Housing Price Shock: The Role of Agent Heterogeneity

- Empirical Evidence:
 - a. Case et al. (2001): corr(c, q) > 0
 - b. Davis & Palumbo (2001): corr(c, qh) > 0
- Homogeneous Agent ⇔ homogeneous house holding:
 - $\label{eq:q} \begin{array}{l} \uparrow \Rightarrow \text{homogeneous qh} \uparrow \Rightarrow \text{total wealth less qh unchanged} \\ \Rightarrow \text{non-housing consumption unchanged}. \end{array}$
- Heterogeneous Agents ⇔ γ < β or β" < β:
 q ↑ ⇒ b and b" ↑ ⇒ c and c" ↑ ⇒ aggregate demand ↑

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

Housing Price Shock: The Role of Agent Heterogeneity

Matteo lacoviello, The American Economic Review, 2005

Housing Price Shock:

The Role of Agent Heterogeneity: Financial Accelerator

Borrower's Demand:

$$\hat{c}_t = E_t \hat{c}_{t+1} + \frac{1}{1 - m\beta} (\hat{q}_t - \underbrace{(1 - \gamma_e) E_t \hat{S}_{t+1}}_{E_t \text{ MP of } h_t} - \gamma_e E_t \hat{q}_{t+1}) + \frac{m\beta}{1 - m\beta} \hat{r}_t$$
(16)

The multiplier, $\frac{1}{1-m\beta}$ can be large, and is increasing with m. • Lenders' Demand:

$$\hat{c}'_{t} = \hat{q}_{t} - \beta E_{t} \hat{q}_{t+1} - \iota \hat{h}_{t} + \beta E_{t} \hat{c}_{t+1}$$
(17)

The effect of q_t on c_t is simply one-for-one.

 Financial Accelerator: Collateral effects amplify demand-type shocks, i.e. housing price shock.

Matteo lacoviello, The American Economic Review, 2005

Inflation Shock: The Role of Nominal Debt

FIGURE 4. RESPONSE OF OUTPUT TO AN INFLATION SHOCK: NOMINAL VERSUS INDEXED DEBT Notes: Ordinate: time horizon in quarters. Coordinate: percent deviation from initial steady state.

Matteo lacoviello, The American Economic Review, 2005

Inflation Shock: The Role of Nominal Debt

Nominal Debt (Two effects):

1. P $\uparrow \Rightarrow$ desired supply at given price $\downarrow \Rightarrow$ output \downarrow

2. Transfer wealth from lenders to the borrowers (MPC $\uparrow) \Rightarrow$ output \uparrow

 \Rightarrow Hump-shape response of output

Indexed Debt (One effect):

1. P $\uparrow \Rightarrow$ desired supply at given price $\downarrow \Rightarrow$ output \downarrow

 Financial Decelerator: Debt-deflation stabilizes supply-type shocks (with negative trade-off between output and inflation), i.e. an inflation shock.

3

Impulse Response Functions

Matteo lacoviello, The American Economic Review, 2005

Impulse Response Functions

- A negative monetary shock: The drop in inflation: immediate (model) vs. delayed (data) House price: initial fall & overshooting The drop in output: immediate (model) vs. delayed (data)
- A positive inflation shock: Interest rate: positive House price: negative Output: sluggish
- A positive housing price shock: Inflation, Output: positive comovement
- A positive output shock: Interest rate, house price: sluggish (model) vs. positive(data) Inflation: negative (model) vs. sluggish (data)

Assume that volatility of output and inflation are the two goals of central bank. For shocks that generate negative comovement b/w volatility of output and inflation, two questions arise:

- Should monetary policy instrument (interest rate) respond to housing prices?
- How different financing arrangements (nominal vs. indexed debt) affect the volatility of the economy?

Introduction VAR Basic Model Full Model Implication Conclusion Appendix

Should Central Banks Respond to Housing Prices?

Specification of policy rule:

 $\hat{R_t} = 0.73\hat{R_{t-1}} + 0.27(r_q\hat{q_t} + (1 + r_\pi)\hat{\pi_{t-1}} + r_Y\hat{Y_{t-1}})$

- Two efficient frontiers:
 - 1. $r_q = 0$: No response to asset prices.
 - 2. r_q free: Allow for response to asset prices.

Results:

- a. Optimal r_q is positive;
- b. But only marginal gains.

Literature:

a.BG(2001) and Gilchrist &Leahy (2002): signal-to-noise ratio of asset prices is too low.

b.This paper: Asset prices do matter, but the gain is too limited.

Matteo lacoviello, The American Economic Review, 2005

Should Central Banks Respond to Housing Prices?

Note: The triangle indicates the performance of the rule estimated for the period 1974Q1-2003Q2.

Matteo lacoviello, The American Economic Review, 2005

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

A (1) > A (1) > A

-

Does Debt Indexation Reduce Economic Volatility?

 Nominal debt amplifies demand-type shocks and mitigates supply shocks.

 \Leftrightarrow Debt indexation stabilizes only demand-type shocks.

- A demand-type shock (MP shock):
 - 1. r $\downarrow \Rightarrow$ borrowing limit $\uparrow \Rightarrow$ demand \uparrow

2. r $\downarrow \Rightarrow$ debt service of debtor $\downarrow \Rightarrow$ demand \uparrow

- A supply-type shock (inflation shock):
 - 1. P $\uparrow \Rightarrow$ desired supply at given price $\downarrow \Rightarrow$ output \downarrow
 - 2. wealth transfer from lenders to the borrowers (MPC $\uparrow) \Rightarrow$ output \uparrow
- For demand-type shocks: Debt indexation can reduce volatility.

	VAR	Basic Model	Full Model	Conclusion	
Conclus	ion				

- Incorporate financial friction to monetary business cycle model
- Add two dimensions

a. Collateral effect: match positive co-movement $b/w \mbox{ output}$ and housing price.

b. Nominal debt contract: match the sluggish response of output to inflation shocks.

- Asymmetric financial accelerator / decelerator: Debt-deflation amplifies demand shocks and stabilizes supply shocks. (debt deflation channel)
- Unimportance of monetary policys response to asset prices: The welfare gains are only marginal.
- Household heterogeneity: Debtor vs. Creditor Mian, Rao and Sufi (2013); Baker (2017)

Entrepreneurs' Problem

$$L = E_0 \sum_{t=0}^{\infty} \gamma^t \{ \ln c_t + \mu_t [A(h_{t-1})^{\upsilon} (L_t)^{1-\upsilon} \frac{P_t^{w}}{P_t} + b_t - w_t' L_t - q_t \Delta h_t - \frac{b_{t-1} R_{t-1}}{\pi_t} - c_t] + \lambda_t [m E_t q_{t+1} h_t \pi_{t+1} - b_t R_t] \}$$

FOC. w.r.t. *b*_{*t*}:

$$\mu_t = \gamma E_t \mu_{t+1} R_t / \pi_{t+1} + \lambda_t R_t$$

back

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

Retailers' Problem

max

$$\sum_{k=0}^{\infty} \theta^k E_{t-1} \left[\Lambda_{t,k} \frac{P_t^* - P_{t+k}^w}{P_{t+k}} Y_{t+k}^*(z) \right],$$

where the discount rate $\Lambda_{t,k} \equiv \beta C_t / (C_{t+k})$ subject to

$$Y_t(z) = [P_t(z)/P_t]^{-\epsilon} Y_t^f$$

back

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

				Appendix
	_			
Steady	State			

Steady State of the Basic Model. Assuming zero inflation (so that $R = 1/\beta$), the steady state will be described by

$$\begin{split} \frac{h}{H} &= \frac{\gamma \nu (1-\beta)}{\gamma \nu (1-\beta) + j ((X-\nu)(1-\gamma_{\epsilon}) + \gamma \nu (1-\beta)m)} \\ \frac{qh}{Y} &= \frac{\gamma \nu}{1-\gamma_{\epsilon}} \frac{1}{X} \\ \frac{b}{Y} &= \frac{\beta m \gamma \nu}{1-\gamma_{\epsilon}} \frac{1}{X} \\ \frac{c}{Y} &= \frac{\nu}{X} - (1-\beta) m \frac{qh}{Y} = \nu \frac{(1-\gamma)(1-\beta m)1}{1-\gamma_{\epsilon}} \frac{1}{X} \\ \frac{c'}{Y} &= \frac{X-\nu}{X} + (1-\beta) m \frac{qh}{Y} = \left(X-\nu + \frac{\gamma \nu (1-\beta)m}{1-\gamma_{\epsilon}}\right) \frac{1}{X} \end{split}$$

where $\gamma_e \equiv (1 - m)\gamma + m\beta$ is the *average* discount factor for the returns to entrepreneurial real estate investment.

back

Matteo lacoviello, The American Economic Review, 2005

Department of EconomicsHKUST

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	VAR	Basic Model	Full Model	Implication	Conclusion	Appendix
Linearize	d Svs	tem				
2						
(L1)	$\hat{Y}_t = (c/Y)\hat{c}$	$\hat{c}_t + (c'/Y)\hat{c}$	t t		
(L2)	$\hat{c}_t' = E_t \hat{c}$	$r_{t+1}^{\prime} - \hat{rr}_t$			
(L3) $c\hat{c}_t$	$=b\hat{b}_{t}+Rb($	$\hat{\pi}_t - \hat{R}_{t-1}$	$-\hat{b}_{t-1})$		
		$+ (\nu Y/X)($	$(\hat{Y}_t - \hat{X}_t) - \hat{Q}_t$	$h\Delta \hat{h}_t$		

(L4) $\hat{q}_{t} = \gamma_{e} E_{t} \hat{q}_{t+1} + (1 - \gamma_{e}) E_{t}$ $\times (\hat{Y}_{i+1} - \hat{h}_i - \hat{X}_{i+1})$ $-m\beta r \hat{r}_{t} - (1 - m\beta) E_{t} \Delta \hat{c}_{t+1}$

(L5) $\hat{q}_{t} = \beta E_{t} \hat{q}_{t+1} + \iota \hat{h}_{t} + \hat{c}_{t}' - \beta E_{t} \hat{c}_{t+1}'$

Matteo Jacoviello, The American Economic Review, 2005

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Linearized System

$$(\mathbf{L6}) \qquad \hat{b}_t = E_t \hat{q}_{t+1} + \hat{h}_t - \hat{rr}_t$$

(L7)
$$\hat{Y}_t = \frac{\eta \nu}{\eta - (1 - \nu)} \hat{h}_{t-1}$$

$$-\frac{1-\nu}{\eta-(1-\nu)}(\hat{X}_t+\hat{c}_t')$$

(L8)
$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} - \kappa \hat{X}_t$$

(L9)
$$\hat{R}_t = (1 - r_R)((1 + r_\pi)\hat{\pi}_{t-1} + r_Y\hat{Y}_{t-1})$$

$$+ r_R \hat{R}_{t-1} + \hat{e}_{R,t}$$

where
$$\iota \equiv (1 - \beta)h/h'$$
, $\kappa \equiv (1 - \theta)(1 - \beta\theta)/\theta$,
 $\gamma_e \equiv m\beta + (1 - m)\gamma$, and $\widehat{rr_t} \equiv \hat{R}_t - E_t \hat{\pi}_{t+1}$ is

bacl

Matteo lacoviello, The American Economic Review, 2005

Housing Prices, Borrowing Constaints, and Monetary Policy in the Business Cycle

Department of EconomicsHKUST

э

・ロン ・回と ・ヨン ・ヨン