Firm Dynamics and Financial Development

Arellano, Bai and Zhang (2012, JME)

Prepared by Ding Dong
Department of Economics, HKUST

Overview

- firm dynamic: size effects
- size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
- size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
- frictionless economy: no size effects
- theory: financial friction ${ }^{1}$; adjustment cost; trade etc.

Overview

- firm dynamic: size effects
- size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
- size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
- frictionless economy: no size effects
- theory: financial friction ${ }^{1}$; adjustment cost; trade etc.
- effects conditional on
- firm characteristics: age, sector etc.
- U.S. economy: industry structure, financial development etc

[^0]
Overview

- firm dynamic: size effects
- size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
- size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
- frictionless economy: no size effects
- theory: financial friction ${ }^{1}$; adjustment cost; trade etc.
- effects conditional on
- firm characteristics: age, sector etc.
- U.S. economy: industry structure, financial development etc
- this paper: condition of financial development \Rightarrow size effects
- cross-country variation
- financial development \leftrightarrow size-growth, size-leverage
- quantitative model

[^1]
Empirical 1

b

Fig. 1. Firm size, leverage and sales growth. (a) Size and growth. (b) Size and leverage.

- size-growth relation (panel a)
- small firms grow faster than large firms
- difference is larger in Bulgaria
- size-leverage relation (panel b)
- Bulgaria: small firms use less debt financing
- UK: small firms use more debt financing

Empirical 2

- database: Amadeus
- 27 European countries
- 2.6 million firms in non-financial, non-public sectors
- regression:

$$
\begin{equation*}
y_{k, c}=\beta_{0}+\beta_{1} \operatorname{size}_{k, c}+\beta_{2} \operatorname{size}_{k, c} * F D_{c}+\text { Dummy }+v_{k, c} \tag{1}
\end{equation*}
$$

- dependent variables $\left(y_{k, c}\right)$: growth, leverage
- growth $=$ growth rates of sales
- leverage = total debt / total asset
- independent variables: size, FD, dummy
- size: book value of the firm's total asset
- FD: development of financial markets
- average private credit to GDP ratio (+)
- share of banks' overhead costs in total bank assets (-)
- coverage of credit bureaus (+)
- dummy: fixed effects of country, industry and age

Empirical 2

Table 2
Firm leverage, growth and financial development.

	Leverage			Sales growth		
	(1)	(2)	(3)	(1)	(2)	(3)
Size	$\begin{aligned} & 0.021^{* * *} \\ & (0.0002) \end{aligned}$	$\begin{aligned} & 0.014^{\text {*** }} \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 0.018^{* * *} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.134^{* * *} \\ & (0.0016) \end{aligned}$	$\begin{aligned} & 0.024^{* * *} \\ & (0.0011) \end{aligned}$	$\begin{aligned} & -0.082^{* * *} \\ & (0.0010) \end{aligned}$
$F D \times$ Size	$\begin{aligned} & -0.006^{* * *} \\ & (0.0002) \end{aligned}$	$\begin{aligned} & 0.050^{* * * *} \\ & (0.0048) \end{aligned}$	$\begin{aligned} & -0.005^{* * *} \\ & (0.0002) \end{aligned}$	$\begin{aligned} & 0.097 \\ & (0.0013) \end{aligned}$	$\begin{aligned} & -1.880^{* * *} \\ & (0.0310) \end{aligned}$	$\begin{aligned} & 0.051^{\text {twa }} \\ & (0.0008) \end{aligned}$
Adjusted R^{2}	0.28	0.27	0.28	0.06	0.06	0.06
Observations	2621201	2606324	2621201	2621201	2606324	2621201

Notes: Size is measured by the logged asset share of a firm. FD denotes financial development, measured by private credit to GDP (1), overhead costs (2) or credit bureau coverage (3). All regressions have a fixed effect at the country \times industry \times age level. The standard errors reported in parentheses are robust to heteroskedasticity. ${ }^{* * *}$ denotes significant at 1%.
implied y -size coefficient $=\beta_{1}+\beta_{2} * F D_{c}$

Country	FD(1)	size-leverage	size-growth
UK	1.42	0.012	0.004
Germany	1.16	0.014	-0.021
Sweden	0.89	0.016	-0.048
Median	0.47	0.018	-0.088
Bulgaria	0.22	0.020	-0.113

Empirical 2

- size-leverage relation
- median financial market: size $\uparrow \rightarrow$ leverage \uparrow
- financial development $\uparrow \Rightarrow$ size-leverage slope \downarrow
- size-growth relation
- median financial market: size $\uparrow \Rightarrow$ growth \downarrow
- financial development $\uparrow \Rightarrow$ size-growth slope \uparrow
- financial development and size effects
- FD $\uparrow \Rightarrow$ size effects \downarrow : small firm \sim large firm
- $\mathrm{FD} \uparrow \Rightarrow$ 'distortion' \downarrow for small firms

Model

- full model
- idiosyncratic prod shock (permanent and transitory)
- capital adjustment cost and partial depreciation
- equity financing: proportional cost
- debt financing: default risk with partial recovery
- debt creditor: fixed cost (proxy for FD)
- analytical solution w. assumptions
- quantitative solution of full model

Full Model: Technology

Decreasing return to scale technology:

$$
\begin{equation*}
y=z K^{\alpha}, \quad 0<\alpha<1 \tag{2}
\end{equation*}
$$

- z: idiosyncratic prod
- z: Markov process, $f\left(z^{\prime}, z\right)$
- $\log (z)=\log (\mu)+\log (\varepsilon)$
- permanent component (productivity): $\left\{\mu_{z}^{i}, i=1: 5\right\}$
- stochastic component (luck): $\left\{\varepsilon_{l}, \varepsilon_{h}\right\}$
- θ : prob of exogenous death
- K: capital stock
- depreciation: δ
- net investment: $K^{\prime}-(1-\delta) K$
- adjustment cost: $\phi\left(K^{\prime}-K\right)^{2} / K$
- degree of friction: ϕ

Full Model: Debt Contract

- debt contract:

$$
\begin{equation*}
\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega\left(K^{\prime}, z\right) \tag{3}
\end{equation*}
$$

B^{\prime} : new loan. B_{R}^{\prime} : face value.

Full Model: Debt Contract

- debt contract:

$$
\begin{equation*}
\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega\left(K^{\prime}, z\right) \tag{3}
\end{equation*}
$$

B^{\prime} : new loan. B_{R}^{\prime} : face value.

- recovery value if firms default:

$$
\begin{equation*}
R\left(K^{\prime}\right)=\max \left\{(1-\psi)(1-\delta) K^{\prime}-\phi K^{\prime}, 0\right\} \tag{4}
\end{equation*}
$$

- parameters
- recovery rate: $1-\psi$

Full Model: Debt Contract

- debt contract:

$$
\begin{equation*}
\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega\left(K^{\prime}, z\right) \tag{3}
\end{equation*}
$$

B^{\prime} : new loan. B_{R}^{\prime} : face value.

- recovery value if firms default:

$$
\begin{equation*}
R\left(K^{\prime}\right)=\max \left\{(1-\psi)(1-\delta) K^{\prime}-\phi K^{\prime}, 0\right\} \tag{4}
\end{equation*}
$$

- break-even condition

$$
\begin{equation*}
B^{\prime}+\xi=\frac{B_{R}\left(1-\int \tilde{d} f\left(z^{\prime}, z\right) d z^{\prime}\right)+R\left(K^{\prime}\right) \int \tilde{d} f\left(z^{\prime}, z\right) d z^{\prime}}{1+r} \tag{5}
\end{equation*}
$$

- parameters
- recovery rate: $1-\psi$
- financial intermediation cost: ξ (proxy for financial development)
- binary default decision: $\tilde{d}=d\left(K, B_{R}, z\right)$

Full Model: Equity

- dividend:

$$
\begin{equation*}
D=z K^{\alpha}-B_{R}+B^{\prime}-K^{\prime}+(1-\delta) K-\phi\left(K^{\prime}-K\right)^{2} / K \tag{6}
\end{equation*}
$$

Full Model: Equity

- dividend:

$$
\begin{equation*}
D=z K^{\alpha}-B_{R}+B^{\prime}-K^{\prime}+(1-\delta) K-\phi\left(K^{\prime}-K\right)^{2} / K \tag{6}
\end{equation*}
$$

- value function:

$$
\begin{equation*}
V\left(K, B_{R}, z\right)=\max _{\tilde{d} \in\{0,1\}}(1-\tilde{d}) V^{c}\left(K, B_{R}, z\right) \tag{7}
\end{equation*}
$$

- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K, B_{R}, z\right)=\max _{D, K^{\prime},\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega}\left(1+\gamma 1_{D<0}\right) D+\beta E_{z} V\left(K^{\prime}, B_{R}^{\prime}, z^{\prime}\right) \tag{8}
\end{equation*}
$$

Analytical Solution

- assumptions
- idiosyncratic prod shock (permanent and transitory)
- eapital adjustment cost and partial full depreciation
- equity financing: proportional cost
- debt financing: default risk with partial no recovery
- debt creditor: fixed cost (proxy for FD)

Analytical Solution

- assumptions
- idiosyncratic prod shock (permanent and transitory)
- eapital adjustment cost and partial full depreciation
- equity financing: proportional cost
- debt financing: default risk with partial no recovery
- debt creditor: fixed cost (proxy for FD)
- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K, B_{R}, z\right)=\max _{K^{\prime}, B^{\prime}} z K^{\alpha}-B_{R}+B^{\prime}-K^{\prime}+\beta V\left(K^{\prime}, B_{R}^{\prime}, z\right) \tag{9}
\end{equation*}
$$

Analytical Solution

- assumptions
- idiosyncratic prod shock (permanent and transitory)
- eapital adjustment cost and partial full depreciation
- equity financing: proportional cost
- debt financing: default risk with partial no recovery
- debt creditor: fixed cost (proxy for FD)
- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K, B_{R}, z\right)=\max _{K^{\prime}, B^{\prime}} z K^{\alpha}-B_{R}+B^{\prime}-K^{\prime}+\beta V\left(K^{\prime}, B_{R}^{\prime}, z\right) \tag{9}
\end{equation*}
$$

- assumption: $\beta(1+r)<1$ and ξ sufficiently small:

$$
\begin{equation*}
K^{\prime}=K_{f b}(z): z \alpha K_{f b}^{\alpha-1}=1+r \tag{10}
\end{equation*}
$$

Analytical Solution

- debt limit and repayment denoted as $\bar{B}(z)$ and $\overline{B_{R}}(z)$

$$
\begin{equation*}
\bar{B}(z)+\xi=\frac{\overline{B_{R}}(z)}{1+r} \tag{11}
\end{equation*}
$$

Analytical Solution

- debt limit and repayment denoted as $\bar{B}(z)$ and $\overline{B_{R}}(z)$

$$
\begin{equation*}
\bar{B}(z)+\xi=\frac{\overline{B_{R}}(z)}{1+r} \tag{11}
\end{equation*}
$$

- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K_{f b}, \overline{B_{R}}, z\right)=z K_{f b}^{\alpha}-\overline{B_{R}}+\bar{B}-K_{f b}+\beta V\left(K_{f b}, \overline{B_{R}}, z\right) \tag{12}
\end{equation*}
$$

Analytical Solution

- debt limit and repayment denoted as $\bar{B}(z)$ and $\overline{B_{R}}(z)$

$$
\begin{equation*}
\bar{B}(z)+\xi=\frac{\overline{B_{R}}(z)}{1+r} \tag{11}
\end{equation*}
$$

- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K_{f b}, \overline{B_{R}}, z\right)=z K_{f b}^{\alpha}-\overline{B_{R}}+\bar{B}-K_{f b}+\beta V\left(K_{f b}, \overline{B_{R}}, z\right) \tag{12}
\end{equation*}
$$

- no default at debt limit: $V\left(K_{f b}, \overline{B_{R}}, z\right)=V^{c}\left(K_{f b}, \overline{B_{R}}, z\right)$

$$
\begin{equation*}
V^{c}\left(K_{f b}, B_{R}, z\right)=\left[z K_{f b}^{\alpha}-K_{f b}-r \bar{B}(z)-(1+r) \xi\right] /(1-\beta) \tag{13}
\end{equation*}
$$

Analytical Solution

- debt limit and repayment denoted as $\bar{B}(z)$ and $\overline{B_{R}}(z)$

$$
\begin{equation*}
\bar{B}(z)+\xi=\frac{\overline{B_{R}}(z)}{1+r} \tag{11}
\end{equation*}
$$

- value function conditional on repayment:

$$
\begin{equation*}
V^{c}\left(K_{f b}, \overline{B_{R}}, z\right)=z K_{f b}^{\alpha}-\overline{B_{R}}+\bar{B}-K_{f b}+\beta V\left(K_{f b}, \overline{B_{R}}, z\right) \tag{12}
\end{equation*}
$$

- no default at debt limit: $V\left(K_{f b}, \overline{B_{R}}, z\right)=V^{c}\left(K_{f b}, \overline{B_{R}}, z\right)$

$$
\begin{equation*}
V^{c}\left(K_{f b}, B_{R}, z\right)=\left[z K_{f b}^{\alpha}-K_{f b}-r \bar{B}(z)-(1+r) \xi\right] /(1-\beta) \tag{13}
\end{equation*}
$$

- debt limit derived from:

$$
\begin{equation*}
V^{c}\left(K_{f b}, B_{R}, z\right)=0 \tag{14}
\end{equation*}
$$

Analytical Solution

- debt limit:

$$
\begin{equation*}
\bar{B}(z)=\frac{(1+r-\alpha)}{r \alpha} K_{f b}(z)-\frac{1+r}{r} \xi \tag{15}
\end{equation*}
$$

Analytical Solution

- debt limit:

$$
\begin{equation*}
\bar{B}(z)=\frac{(1+r-\alpha)}{r \alpha} K_{f b}(z)-\frac{1+r}{r} \xi \tag{15}
\end{equation*}
$$

- leverage ratio:

$$
\begin{equation*}
\frac{\bar{B}(z)}{K_{f b}(z)}=\frac{(1+r-\alpha)}{r \alpha}-\frac{1+r}{r} \frac{\xi}{K_{f b}(z)} \tag{16}
\end{equation*}
$$

Analytical Solution

- debt limit:

$$
\begin{equation*}
\bar{B}(z)=\frac{(1+r-\alpha)}{r \alpha} K_{f b}(z)-\frac{1+r}{r} \xi \tag{15}
\end{equation*}
$$

- leverage ratio:

$$
\begin{equation*}
\frac{\bar{B}(z)}{K_{f b}(z)}=\frac{(1+r-\alpha)}{r \alpha}-\frac{1+r}{r} \frac{\xi}{K_{f b}(z)} \tag{16}
\end{equation*}
$$

- size-leverage relation
- larger firm \leftrightarrow higher leverage
- fixed credit cost ξ affects small firm disproportionately

Analytical Solution

- debt limit:

$$
\begin{equation*}
\bar{B}(z)=\frac{(1+r-\alpha)}{r \alpha} K_{f b}(z)-\frac{1+r}{r} \xi \tag{15}
\end{equation*}
$$

- leverage ratio:

$$
\begin{equation*}
\frac{\bar{B}(z)}{K_{f b}(z)}=\frac{(1+r-\alpha)}{r \alpha}-\frac{1+r}{r} \frac{\xi}{K_{f b}(z)} \tag{16}
\end{equation*}
$$

- size-leverage relation
- larger firm \leftrightarrow higher leverage
- fixed credit cost ξ affects small firm disproportionately
- fixed credit cost \rightarrow size-leverage relation
- $\xi=0$: no size effect on leverage
- $\xi \uparrow$: size effect on leverage \uparrow

Full Model: Entrants

- entrant:

$$
V^{e}\left(K_{0}, 0, z\right)=\max _{D, K^{\prime},\left(B^{\prime}, B_{R}^{\prime}\right)}\left(1+\gamma_{e} 1_{D<0}\right) D+\beta E\left[V\left(K^{\prime}, B_{R}^{\prime}, z^{\prime}\right)\right]
$$

subject to

$$
\begin{equation*}
D=B^{\prime}-K^{\prime}-\phi\left(K^{\prime}-K_{0}\right)^{2} / K_{0} \tag{18}
\end{equation*}
$$

and $z^{\prime} \sim g\left(z^{\prime}\right)$

- mass of project $=1$
- project: exit firms \rightarrow potential entrants

Full Model: Distribution

- distribution: $s \equiv\left(K, B_{R}, z\right)$

$$
\begin{align*}
\Gamma\left(s^{\prime}\right)= & \int[1-d(s)] Q\left(s, s^{\prime}\right) f\left(z^{\prime}, z\right) \Gamma(s) d\left(K \times B_{R} \times z\right) \\
& +\int d(s) Q_{e}\left(s^{\prime}\right) g\left(z^{\prime}\right) \Gamma(s) d\left(K \times B_{R} \times z\right) \tag{19}
\end{align*}
$$

where transition functions are:

$$
Q\left(s^{\prime}, s\right)= \begin{cases}1, & \text { if } K^{\prime}\left(K, B_{R}, Z\right)=K^{\prime}, B_{R}^{\prime}\left(K, B_{R}, Z\right)=B_{R}^{\prime} \tag{20}\\ 0, & \text { otherwise }\end{cases}
$$

and for entrants

$$
Q_{e}\left(s^{\prime}\right)= \begin{cases}1, & \text { if } K^{\prime}\left(K_{0}, 0\right)=K^{\prime}, B_{R}^{\prime}\left(K_{0}, 0\right)=B_{R}^{\prime} \tag{21}\\ 0, & \text { otherwise }\end{cases}
$$

Calibration

Table 6

Benchmark parameters and target moments.

Calibrated parameters		
Discount factor	β	0.96
Interest rate	r	0.04
Capital depreciation rate	δ	0.10
Technology	α	0.65
Equity issuance cost	γ	0.30
Capital loss after default	ψ	0.25
Death rate	θ	0.072
Shock persistence	ρ	0.86
Estimated parameters		
Permanent productivity	c	0.550
Stochastic shock variance	σ	0.525
Capital adjustment cost	ϕ	0.001
Credit cost	ξ	0.010
Entrant starting capital	K_{0}	0.002
Entrant equity issuance cost	γ_{e}	0.130

Quantitative Analysis

- permanent productivity shock: analytical solution

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
- median permanent shock ($\mu=\mu_{\text {z }}^{3}$)
- low stochastic shock $\left(\varepsilon=\varepsilon_{l}\right)$
- average capital stock $K=K_{\text {mean }}$ with median productivity

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
- median permanent shock ($\mu=\mu_{\text {z }}^{3}$)
- low stochastic shock $\left(\varepsilon=\varepsilon_{l}\right)$
- average capital stock $K=K_{\text {mean }}$ with median productivity
- debt contract: $\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega\left(K^{\prime}, z\right)$
- effective interest rate $($ spread $)=\frac{B_{R}^{\prime}}{B^{\prime}}-1$
- spread in U-shape
- high for small loans: fixed credit cost ξ
- high for large loans: default risk

Quantitative: Debt Contract

[Figure 2: Sensitivity of Debt Schedule]

- sensitivity to K^{\prime} : collateral effect (panel a)
- sensitivity to μ (panel b)
- sensitivity to ξ (panel c)

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
- median permanent shock ($\mu=\mu_{z}^{3}$)
- low stochastic shock $\left(\varepsilon=\varepsilon_{l}\right)$
- average capital stock $K=K_{\text {mean }}$ with median productivity
- debt contract: $\left(B^{\prime}, B_{R}^{\prime}\right) \in \Omega\left(K^{\prime}, z\right)$
- effective interest rate $($ spread $)=\frac{B_{R}^{\prime}}{B^{\prime}}-1$
- spread in U-shape
- high for small loans: fixed credit cost ξ
- high for large loans: default risk
- policy rule: $K^{\prime}\left(K, B_{R}, z\right), D\left(K, B_{R}, z\right), B^{\prime}\left(K, B_{R}, z\right)$
- median permanent shock ($\mu=\mu_{z}^{3}$)
- low stochastic shock $\left(\varepsilon=\varepsilon_{l}\right)$
- average debt level $B=0.43 * K_{\text {mean }}$

Quantitative: Policy Rules

Fig. 3. Policy rules. Note: This figure plots the optimal capital choice K^{\prime}, dividends D, and the ratio of the loan choice relative to the capital choice B^{\prime} / K^{\prime} as a function of the beginning capital K for a firm with median permanent productivity μ_{2}^{3}, stochastic shock E_{l} and debt at 43% of the average capital across the μ_{2}^{3}-firms. All values on the axis are relative to the average capital across the μ_{z}^{3}-firms.

- smallest firm [0\%-20\%]
- medium firm [20\%-75\%]
- largest firm [75\%-]

[^2]
Quantitative: Model Moments

Table 7
Quantitative model results.

	Bulgaria data		Bulgaria benchmark		Zero credit cost	
	Growth	Leverage	Growth	Leverage	Growth	Leverage
All firms						
Mean	0.32	0.36	0.34	0.48	0.30	0.68
Small firms	0.37	0.26	0.62	0.32	0.34	0.65
Large firms	0.26	0.46	0.05	0.64	0.26	0.71
Difference	0.11	-0.20	0.57	-0.32	0.08	-0.06

- leverage: unproductive vs unlucky
- unproductive: low permanent shock \rightarrow high spread \rightarrow lower leverage
- unlucky: sequence of low transitory shock \rightarrow higher leverage
- growth
- hit by good transitory shock \rightarrow higher growth \rightarrow efficient level
- counterfactual: credit cost (ξ)
- inefficiency: unfavorable debt schedule for small firms

Quantitative: Robustness

- Regression 1:

$$
\text { Growth }_{k}=\beta_{0}+\beta_{1} \operatorname{size}_{k}+e_{k}
$$

- $\beta_{1}<0$: size-growth relation

Quantitative: Robustness

- Regression 1 :

$$
\operatorname{Growth}_{k}=\beta_{0}+\beta_{1} \operatorname{size}_{k}+e_{k}
$$

- $\beta_{1}<0$: size-growth relation
- Regression 2:

$$
\text { Leverage }_{k}=\beta_{0}+\beta_{1} \operatorname{size}_{k}+e_{k}
$$

- $\beta_{1}>0$: size-leverage relation

Quantitative: Robustness

- Regression 1:

$$
\text { Growth }_{k}=\beta_{0}+\beta_{1} \text { size}_{k}+e_{k}
$$

- $\beta_{1}<0$: size-growth relation
- Regression 2:

$$
\text { Leverage }_{k}=\beta_{0}+\beta_{1} \text { size }_{k}+e_{k}
$$

- $\beta_{1}>0$: size-leverage relation
- Regression 3:

$$
y_{k, c}=\beta_{0}+\beta_{1} \operatorname{size}_{k, c}+\beta_{2} \operatorname{size}_{k, c} *\left(\text { Credit }^{2} \text { GDP }\right)_{c}+e_{k, c}
$$

- y : zero-leverage dummy $=1$ if leverage is zero.
- $\beta_{1}>0$: size-leverage relation
- $\beta_{2}<0$: financial development \rightarrow size-leverage relation

Conclusion

- benchmark size effects
- small firms grow faster than large firms
- small firm use less debt financing than large firms
- as financial development improves
- growth rate of small firms relative to large firm decreases
- leverage ratio of small firms relative to large firm increases
- micro-data into macro quantitative model
- growth and financing patterns
- across firms and across country

Reference

- Albuquerque, R., Hopenhayn, H. A. (2004). Optimal lending contracts and firm dynamics. The Review of Economic Studies, 71(2), 285-315.
- Arellano, C., Bai, Y., Zhang, J. (2012). Firm dynamics and financial development. Journal of Monetary Economics, 59(6), 533-549.
- Clementi, G. L., Hopenhayn, H. A. (2006). A theory of financing constraints and firm dynamics. The Quarterly Journal of Economics, 121(1), 229-265.
- Cooley, T. F., Quadrini, V. (2001). Financial markets and firm dynamics. American economic review, 91(5), 1286-1310.
- DeMarzo, P. M., Fishman, M. J. (2007). Agency and optimal investment dynamics. The Review of Financial Studies, 20(1), 151-188.

[^0]: ${ }^{1}$ Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and DeMarzo and Fishman (2007) etc.

[^1]: ${ }^{1}$ Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and DeMarzo and Fishman (2007) etc.

[^2]: ${ }^{2}$ Note: All statistics are normalized by $K_{\text {mean }}$

