Model 00000000

Quantitative

Conclusior

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Firm Dynamics and Financial Development

Arellano, Bai and Zhang (2012, JME)

Prepared by Ding Dong Department of Economics, HKUST

Conclusion

Overview

- firm dynamic: size effects
 - size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
 - size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
 - frictionless economy: no size effects
 - theory: financial friction ¹; adjustment cost; trade etc.

¹Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and DeMarzo and Fishman (2007) etc. $\Box \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle$

Conclusion

Overview

- firm dynamic: size effects
 - size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
 - size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
 - frictionless economy: no size effects
 - theory: financial friction ¹; adjustment cost; trade etc.
- effects conditional on
 - firm characteristics: age, sector etc.
 - U.S. economy: industry structure, financial development etc

¹Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and DeMarzo and Fishman (2007) etc.

Conclusion

Overview

- firm dynamic: size effects
 - size-growth relation: size $\uparrow \Rightarrow$ growth \downarrow
 - size-leverage relation: size $\uparrow \Rightarrow$ leverage \downarrow
 - frictionless economy: no size effects
 - theory: financial friction ¹; adjustment cost; trade etc.
- effects conditional on
 - firm characteristics: age, sector etc.
 - U.S. economy: industry structure, financial development etc
- this paper: condition of financial development \Rightarrow size effects
 - cross-country variation
 - financial development \leftrightarrow size-growth, size-leverage
 - quantitative model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Empirical 1

Fig. 1. Firm size, leverage and sales growth. (a) Size and growth. (b) Size and leverage.

- size-growth relation (panel a)
 - small firms grow faster than large firms
 - difference is larger in Bulgaria
- size-leverage relation (panel b)
 - Bulgaria: small firms use less debt financing
 - UK: small firms use more debt financing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Empirical 2

- database: Amadeus
 - 27 European countries
 - 2.6 million firms in non-financial, non-public sectors
- regression:

 $y_{k,c} = \beta_0 + \beta_1 size_{k,c} + \beta_2 size_{k,c} * FD_c + Dummy + v_{k,c}$ (1)

- dependent variables (y_{k,c}): growth, leverage
 - growth = growth rates of sales
 - leverage = total debt / total asset
- independent variables: size, FD, dummy
 - size: book value of the firm's total asset
 - FD: development of financial markets
 - average private credit to GDP ratio (+)
 - share of banks' overhead costs in total bank assets (-)
 - coverage of credit bureaus (+)
 - dummy: fixed effects of country, industry and age

Empirical 2

Table 2 Firm leverage, growth and financial development.

	Leverage			Sales growth		
	(1)	(2)	(3)	(1)	(2)	(3)
Size	0.021*** (0.0002)	0.014*** (0.0003)	0.018*** (0.0001)	-0.134*** (0.0016)	0.024*** (0.0011)	-0.082*** (0.0010)
$FD \times Size$	- 0.006*** (0.0002)	0.050*** (0.0048)	-0.005*** (0.0002)	0.097*** (0.0013)	-1.880*** (0.0310)	0.051*** (0.0008)
Adjusted R ²	0.28	0.27	0.28	0.06	0.06	0.06
Observations	2 621 201	2 606 324	2 621 201	2 621 201	2 606 324	2 621 201

Notes: Size is measured by the logged asset share of a firm. FD denotes financial development, measured by private credit to GDP(1), overhead costs (2) or credit hureau coverage (3). All regressions have a fixed effect at the country × industry × age level. The standard errors reported in parentheses are robust to heteroskeducitiv, *** denotes significant at 1%

implied y-size coefficient = $\beta_1 + \beta_2 * FD_c$

Country	FD(1)	size-leverage	size-growth
UK	1.42	0.012	0.004
Germany	1.16	0.014	-0.021
Sweden	0.89	0.016	-0.048
Median	0.47	0.018	-0.088
Bulgaria	0.22	0.020	-0.113

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Empirical 2

- size–leverage relation
 - median financial market: size $\uparrow \rightarrow$ leverage \uparrow
 - financial development $\uparrow \Rightarrow$ size-leverage slope \downarrow
- size–growth relation
 - median financial market: size $\uparrow \Rightarrow$ growth \downarrow
 - financial development $\uparrow \Rightarrow$ size-growth slope \uparrow
- financial development and size effects
 - FD $\uparrow \Rightarrow$ size effects $\downarrow:$ small firm \sim large firm
 - FD $\uparrow \Rightarrow$ 'distortion' \downarrow for small firms

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model

• full model

- idiosyncratic prod shock (permanent and transitory)
- capital adjustment cost and partial depreciation
- equity financing: proportional cost
- debt financing: default risk with partial recovery
- debt creditor: fixed cost (proxy for FD)
- analytical solution w. assumptions
- quantitative solution of full model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Full Model: Technology

Decreasing return to scale technology:

$$y = zK^{\alpha}, \quad 0 < \alpha < 1 \tag{2}$$

- z: idiosyncratic prod
 - z: Markov process, f(z', z)

•
$$\log(z) = \log(\mu) + \log(\varepsilon)$$

- permanent component (*productivity*): $\{\mu_z^i, i = 1:5\}$
- stochastic component (*luck*): {ε₁, ε_h}
- θ : prob of exogenous death
- K: capital stock
 - depreciation: δ
 - net investment: $K' (1 \delta)K$
 - adjustment cost: $\phi(K'-K)^2/K$
 - degree of friction: ϕ

Conclusion

Full Model: Debt Contract

debt contract:

$$(B', B'_R) \in \Omega(K', z)$$
 (3)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

B': new loan. B'_R : face value.

Conclusion

Full Model: Debt Contract

• debt contract:

$$(B', B'_R) \in \Omega(K', z) \tag{3}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

B': new loan. B'_R : face value.

recovery value if firms default:

$$R(K') = \max\{(1-\psi)(1-\delta)K' - \phi K', 0\}$$
(4)

• parameters

• recovery rate: $1 - \psi$

Conclusion

Full Model: Debt Contract

• debt contract:

$$(B', B'_R) \in \Omega(K', z)$$
 (3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

B': new loan. B'_R : face value.

recovery value if firms default:

$$R(K') = max\{(1 - \psi)(1 - \delta)K' - \phi K', 0\}$$
(4)

break-even condition

$$B' + \xi = \frac{B_R(1 - \int \tilde{d}f(z', z)dz') + R(K') \int \tilde{d}f(z', z)dz'}{1 + r}$$
(5)

- parameters
 - recovery rate: 1ψ
 - financial intermediation cost: ξ (proxy for financial development)
 - binary default decision: $\tilde{d} = d(K, B_R, z)$

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Full Model: Equity

• dividend:

$$D = zK^{\alpha} - B_{R} + B' - K' + (1 - \delta)K - \phi(K' - K)^{2}/K$$
 (6)

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Full Model: Equity

• dividend:

$$D = zK^{\alpha} - B_R + B' - K' + (1 - \delta)K - \phi(K' - K)^2/K \quad (6)$$

• value function:

$$V(K, B_R, z) = \max_{\tilde{d} \in \{0,1\}} (1 - \tilde{d}) V^c(K, B_R, z)$$
(7)

• value function conditional on repayment:

$$V^{c}(K, B_{R}, z) = \max_{D, K', (B', B'_{R}) \in \Omega} (1 + \gamma 1_{D < 0}) D + \beta E_{z} V(K', B'_{R}, z')$$
(8)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analytical Solution

assumptions

- idiosyncratic prod shock (permanent and transitory)
- capital adjustment cost and partial full depreciation
- equity financing: proportional cost
- debt financing: default risk with partial no recovery
- debt creditor: fixed cost (proxy for FD)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analytical Solution

- assumptions
 - idiosyncratic prod shock (permanent and transitory)
 - capital adjustment cost and partial full depreciation
 - equity financing: proportional cost
 - debt financing: default risk with partial no recovery
 - debt creditor: fixed cost (proxy for FD)
- value function conditional on repayment:

$$V^{c}(K, B_{R}, z) = \max_{K', B'} zK^{\alpha} - B_{R} + B' - K' + \beta V(K', B'_{R}, z)$$
(9)

Analytical Solution

assumptions

- idiosyncratic prod shock (permanent and transitory)
- capital adjustment cost and partial full depreciation
- equity financing: proportional cost
- debt financing: default risk with partial no recovery
- debt creditor: fixed cost (proxy for FD)
- value function conditional on repayment:

$$V^{c}(K, B_{R}, z) = \max_{K', B'} zK^{\alpha} - B_{R} + B' - K' + \beta V(K', B'_{R}, z)$$
(9)

• assumption: $\beta(1+r) < 1$ and ξ sufficiently small:

$$K' = K_{fb}(z) : z\alpha K_{fb}^{\alpha-1} = 1 + r$$
(10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Model

Quantitative

Conclusion

Analytical Solution

• debt limit and repayment denoted as $ar{B}(z)$ and $ar{B_R}(z)$

$$\bar{B}(z) + \xi = \frac{\bar{B}_R(z)}{1+r} \tag{11}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Model

Quantitative

Conclusion

Analytical Solution

• debt limit and repayment denoted as $ar{B}(z)$ and $ar{B_R}(z)$

$$\bar{B}(z) + \xi = \frac{\bar{B}_R(z)}{1+r} \tag{11}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• value function conditional on repayment:

$$V^{c}(K_{fb}, \bar{B_{R}}, z) = zK^{\alpha}_{fb} - \bar{B_{R}} + \bar{B} - K_{fb} + \beta V(K_{fb}, \bar{B_{R}}, z)$$
(12)

Conclusion

Analytical Solution

• debt limit and repayment denoted as $ar{B}(z)$ and $ar{B_R}(z)$

$$\bar{B}(z) + \xi = \frac{\bar{B}_R(z)}{1+r} \tag{11}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

• value function conditional on repayment:

$$V^{c}(K_{fb}, \bar{B_{R}}, z) = zK_{fb}^{\alpha} - \bar{B_{R}} + \bar{B} - K_{fb} + \beta V(K_{fb}, \bar{B_{R}}, z)$$
(12)

• no default at debt limit: $V(K_{fb}, \overline{B}_R, z) = V^c(K_{fb}, \overline{B}_R, z)$

$$V^{c}(K_{fb}, B_{R}, z) = [zK_{fb}^{\alpha} - K_{fb} - r\bar{B}(z) - (1+r)\xi]/(1-\beta)$$
(13)

Conclusion

Analytical Solution

- debt limit and repayment denoted as $ar{B}(z)$ and $ar{B_R}(z)$

$$\bar{B}(z) + \xi = \frac{\bar{B}_R(z)}{1+r} \tag{11}$$

• value function conditional on repayment:

$$V^{c}(K_{fb}, \bar{B}_{R}, z) = zK^{\alpha}_{fb} - \bar{B}_{R} + \bar{B} - K_{fb} + \beta V(K_{fb}, \bar{B}_{R}, z)$$
(12)

• no default at debt limit: $V(K_{fb}, \bar{B_R}, z) = V^c(K_{fb}, \bar{B_R}, z)$

$$V^{c}(K_{fb}, B_{R}, z) = [zK_{fb}^{\alpha} - K_{fb} - r\bar{B}(z) - (1+r)\xi]/(1-\beta) \quad (13)$$

• debt limit derived from:

$$V^{c}(K_{fb}, B_{R}, z) = 0 \tag{14}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Analytical Solution

• debt limit:

$$\bar{B}(z) = \frac{(1+r-\alpha)}{r\alpha} K_{fb}(z) - \frac{1+r}{r} \xi$$
(15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analytical Solution

• debt limit:

$$\bar{B}(z) = \frac{(1+r-\alpha)}{r\alpha} K_{fb}(z) - \frac{1+r}{r} \xi$$
(15)

• leverage ratio:

$$\frac{\bar{B}(z)}{K_{fb}(z)} = \frac{(1+r-\alpha)}{r\alpha} - \frac{1+r}{r}\frac{\xi}{K_{fb}(z)}$$
(16)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Analytical Solution

• debt limit:

$$\bar{B}(z) = \frac{(1+r-\alpha)}{r\alpha} K_{fb}(z) - \frac{1+r}{r} \xi$$
(15)

leverage ratio:

$$\frac{\bar{B}(z)}{K_{fb}(z)} = \frac{(1+r-\alpha)}{r\alpha} - \frac{1+r}{r}\frac{\xi}{K_{fb}(z)}$$
(16)

- size-leverage relation
 - larger firm \leftrightarrow higher leverage
 - fixed credit cost ξ affects small firm disproportionately

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analytical Solution

• debt limit:

$$\bar{B}(z) = \frac{(1+r-\alpha)}{r\alpha} K_{fb}(z) - \frac{1+r}{r} \xi$$
(15)

Ieverage ratio:

$$\frac{\bar{B}(z)}{K_{fb}(z)} = \frac{(1+r-\alpha)}{r\alpha} - \frac{1+r}{r}\frac{\xi}{K_{fb}(z)}$$
(16)

- size-leverage relation
 - larger firm \leftrightarrow higher leverage
 - fixed credit cost ξ affects small firm disproportionately
- fixed credit cost \rightarrow size-leverage relation
 - $\xi = 0$: no size effect on leverage
 - $\xi \uparrow$: size effect on leverage \uparrow

Conclusion

Full Model: Entrants

• entrant:

$$V^{e}(K_{0},0,z) = \max_{D,K',(B',B'_{R})} (1 + \gamma_{e} \mathbb{1}_{D < 0}) D + \beta E[V(K',B'_{R},z')]$$
(17)

subject to

$$D = B' - K' - \phi (K' - K_0)^2 / K_0$$
(18)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

and $z' \sim g(z')$

- mass of project = 1
 - project: exit firms \rightarrow potential entrants

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Full Model: Distribution

• distribution: $s \equiv (K, B_R, z)$

$$\Gamma(s') = \int [1 - d(s)] Q(s, s') f(z', z) \Gamma(s) d(K \times B_R \times z)$$

+
$$\int d(s) Q_e(s') g(z') \Gamma(s) d(K \times B_R \times z)$$
(19)

where transition functions are:

$$Q(s',s) = \begin{cases} 1, & \text{if } \mathcal{K}'(\mathcal{K}, \mathcal{B}_{\mathcal{R}}, Z) = \mathcal{K}', \mathcal{B}'_{\mathcal{R}}(\mathcal{K}, \mathcal{B}_{\mathcal{R}}, Z) = \mathcal{B}'_{\mathcal{R}} \\ 0, & \text{otherwise} \end{cases}$$
(20)

and for entrants

$$Q_{e}(s') = \begin{cases} 1, & \text{if } K'(K_{0}, 0) = K', B'_{R}(K_{0}, 0) = B'_{R} \\ 0, & \text{otherwise} \end{cases}$$
(21)

Conclusion

Calibration

Table 6

Benchmark parameters and target moments.

Calibrated parameters		
Discount factor	β	0.96
Interest rate	r	0.04
Capital depreciation rate	δ	0.10
Technology	α	0.65
Equity issuance cost	γ	0.30
Capital loss after default	ψ	0.25
Death rate	θ	0.072
Shock persistence	ρ	0.86
Estimated parameters		
Permanent productivity	с	0.550
Stochastic shock variance	σ	0.525
Capital adjustment cost	ϕ	0.001
Credit cost	ξ	0.010
Entrant starting capital	K ₀	0.002
Entrant equity issuance cost	Ye	0.130

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Quantitative Analysis

• permanent productivity shock: analytical solution

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
 - median permanent shock $(\mu=\mu_z^3)$
 - low stochastic shock ($\varepsilon = \varepsilon_I$)
 - average capital stock $K = K_{mean}$ with median productivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
 - median permanent shock $(\mu = \mu_z^3)$
 - low stochastic shock (ε = ε_l)
 - average capital stock $K = K_{mean}$ with median productivity
- debt contract: $(B', B'_R) \in \Omega(K', z)$
 - effective interest rate (spread) = $\frac{B'_R}{B'} 1$
 - spread in U-shape
 - high for small loans: fixed credit cost ξ
 - high for large loans: default risk

Introduction 00000 Model 00000000

Quantitative

イロト イヨト イヨト

Conclusion

Quantitative: Debt Contract

[Figure 2: Sensitivity of Debt Schedule]

- sensitivity to K': collateral effect (panel a)
- sensitivity to µ (panel b)
- sensitivity to ξ (panel c)

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Quantitative Analysis

- permanent productivity shock: analytical solution
- stochastic productivity process: quantitative exploration
 - median permanent shock $(\mu = \mu_z^3)$
 - low stochastic shock (ε = ε_l)
 - average capital stock $K = K_{mean}$ with median productivity
- debt contract: $(B', B'_R) \in \Omega(K', z)$
 - effective interest rate (spread) = $\frac{B'_R}{B'} 1$
 - spread in U-shape
 - high for small loans: fixed credit cost ξ
 - high for large loans: default risk
- policy rule: $K'(K, B_R, z), D(K, B_R, z), B'(K, B_R, z)$
 - median permanent shock $(\mu=\mu_z^3)$
 - low stochastic shock ($\varepsilon = \varepsilon_I$)
 - average debt level B = 0.43 * K_{mean}

2

ж

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Quantitative: Policy Rules

Fig. 3. Policy rules. Note: This figure plots the optimal capital choice K', dividends D, and the ratio of the loan choice relative to the capital choice B'/K' as a function of the beginning capital K for a firm with median permanent productivity μ_i^2 , stochastic shock ϵ_i and debt at 43% of the average capital across the μ_i^2 -firms. All values on the axis are relative to the average capital across the μ_i^2 -firms.

- smallest firm [0%-20%]
- medium firm [20%-75%]
- largest firm [75%-]

²Note: All statistics are normalized by K_{mean}

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantitative: Model Moments

Table 7 Quantitative model results.

	Bulgaria data		Bulgaria benchmark		Zero credit cost	
	Growth	Leverage	Growth	Leverage	Growth	Leverage
All firms						
Mean	0.32	0.36	0.34	0.48	0.30	0.68
Small firms	0.37	0.26	0.62	0.32	0.34	0.65
Large firms	0.26	0.46	0.05	0.64	0.26	0.71
Difference	0.11	- 0.20	0.57	-0.32	0.08	-0.06

leverage: unproductive vs unlucky

- unproductive: low permanent shock \rightarrow high spread \rightarrow lower leverage
- unlucky: sequence of low transitory shock \rightarrow higher leverage
- growth
 - hit by good transitory shock \rightarrow higher growth \rightarrow efficient level
- counterfactual: credit cost (ξ)
 - inefficiency: unfavorable debt schedule for small firms

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Quantitative: Robustness

• Regression 1:

$$Growth_k = \beta_0 + \beta_1 size_k + e_k$$

• $\beta_1 < 0$: size-growth relation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Quantitative: Robustness

• Regression 1:

$$Growth_k = \beta_0 + \beta_1 size_k + e_k$$

- $\beta_1 < 0$: size-growth relation
- Regression 2:

$$Leverage_k = \beta_0 + \beta_1 size_k + e_k$$

• $\beta_1 > 0$: size-leverage relation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantitative: Robustness

• Regression 1:

$$Growth_k = \beta_0 + \beta_1 size_k + e_k$$

- $\beta_1 < 0$: size-growth relation
- Regression 2:

$$Leverage_k = \beta_0 + \beta_1 size_k + e_k$$

β₁ > 0: size-leverage relation

• Regression 3:

$$y_{k,c} = \beta_0 + \beta_1 size_{k,c} + \beta_2 size_{k,c} * (Credit/GDP)_c + e_{k,c}$$

- y: zero-leverage dummy = 1 if leverage is zero.
- β₁ > 0: size-leverage relation
- $\beta_2 < 0$: financial development \rightarrow size-leverage relation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

- benchmark size effects
 - small firms grow faster than large firms
 - small firm use less debt financing than large firms
- as financial development improves
 - growth rate of small firms relative to large firm decreases
 - leverage ratio of small firms relative to large firm increases
- micro-data into macro quantitative model
 - growth and financing patterns
 - across firms and across country

Conclusion

Reference

- Albuquerque, R., Hopenhayn, H. A. (2004). Optimal lending contracts and firm dynamics. The Review of Economic Studies, 71(2), 285-315.
- Arellano, C., Bai, Y., Zhang, J. (2012). Firm dynamics and financial development. Journal of Monetary Economics, 59(6), 533-549.
- Clementi, G. L., Hopenhayn, H. A. (2006). A theory of financing constraints and firm dynamics. The Quarterly Journal of Economics, 121(1), 229-265.
- Cooley, T. F., Quadrini, V. (2001). Financial markets and firm dynamics. American economic review, 91(5), 1286-1310.
- DeMarzo, P. M., Fishman, M. J. (2007). Agency and optimal investment dynamics. The Review of Financial Studies, 20(1), 151-188.