Two Paper on Sovereign Defaults

Arellano (2008) and Arellano and Ramanarayanan (2012)

Revised from Fei Zhou
Department of Economics, HKUST

Presented by Ding Dong @ PHBS Macro Group

Introduction

- Sovereign default is more likely in recession or boom?
- Economies issue more short-term or long-term bond in recession?

A framework for sovereign debt and its business cycle implication

International Risk Sharing

- Countries receive i.i.d income shock $\left\{y_{L}, y_{H}\right\}$, how to smooth consumption?
- 4 common contract arrangements
- Arrow-Debreu asset market, full commitment
- Arrow-Debreu asset market, no commitment
- One-period debt market, full commitment
- One-period debt market, no commitment

Arrow-Debreu Asset Market, Full Commitment

- Asset market opens once at time 0
- Assets: claims contingent on all possible realization of shock
- Equilibrium: all countries consume a constant path of consumption
- Contract: $y_{H} \rightarrow$ transfer out, $y_{L} \rightarrow$ receive transfer

Arrow-Debreu Asset Market, No commitment

- Country can walk away at the cost of exclusion form the contract
- Suppose today income is y_{H}, contract regulates "contribute"
- Default decision balances
- benefit: no "contribute" today
- cost: go to Autarky and get a bumpy future consumption
- More likely to default in boom
- default benefit: benefit $\left(y_{H}\right)>\operatorname{benefit}\left(y_{L}\right)$
- default cost: $\operatorname{cost}\left(y_{H}\right)=\operatorname{cost}\left(y_{L}\right)$

One-period Debt Market, Full Commitment

- One-period bond market opens at the beginning of each period
- State: country wakes up each period with a bond or debt position
- Equilibrium: today income \rightarrow forecast future income \rightarrow consumption plan
- Consumption: less volatile than Autarky, more volatile than Arrow-Debreu

One-period Debt Market, No Commitment

- Suppose today NIIP is negative (debt), contract regulates "repay"
- Default decision balances
- benefit: hold up more resource today
- cost: go to Autarky + current fractional output loss
- More likely to default in recession
- default benefit: $M U\left(y_{H}\right)<M U\left(y_{L}\right) \rightarrow \operatorname{benefit}\left(y_{H}\right)<\operatorname{benefit}\left(y_{L}\right)$
- default cost: $\operatorname{cost}\left(y_{H}\right)=\operatorname{cost}\left(y_{L}\right)$

One-period Debt Market, No Commitment (Cont'd)

- But in business cycle literature, shock is usually persistent
- Default in recession or boom becomes a quantitative problem
- default benefit:

$$
M U\left(y_{H, t}\right)<M U\left(y_{L, t}\right) \rightarrow \operatorname{benefit}\left(y_{H, t}\right)<\operatorname{benefit}\left(y_{L, t}\right)
$$

- default cost: $y_{H, t} \rightarrow \operatorname{Pr}\left(y_{H, t+1}\right)>\operatorname{Pr}\left(y_{L, t+1}\right) \rightarrow \operatorname{cost}\left(y_{H}\right)<\operatorname{cost}\left(y_{L}\right)$
- with $y_{H, t}$ less precautionary motive
- Literature includes current fractional output loss to reduce benefit $\left(y_{H}\right)$

Part II: Default Risk and Income Fluctuations

- Arellano, 2008
- A framework to discuss sovereign bond with limited commitment

Several Questions about Default

- Debt and default: positive correlated?
- Country spread and default probability
- Default in good time or bad time?

Some Basic Definitions

- Without default risk, two equivalent ways of pricing bond

1. today obtain: 1 tomorrow repay: $1+r^{*}$
2. today obtain: q tomorrow repay: 1

$$
\frac{1+r^{*}}{1}=\frac{1}{q} \quad \rightarrow \quad q=\frac{1}{1+r^{*}}
$$

- With default risk

1. today obtain: 1 tomorrow repay: $1+r^{*}$
2. today obtain: q tomorrow repay: $1-\operatorname{Pr}($ default $)$

$$
\frac{1+r^{*}}{1}=\frac{1-\operatorname{Pr}(\text { default })}{q} \rightarrow q=\frac{1-\operatorname{Pr}(\text { default })}{1+r^{*}}
$$

- Interest rate spread

$$
r-r^{*}=\frac{1}{q}-\left(1+r^{*}\right)=\left(1+r^{*}\right)\left(\frac{1}{1-\operatorname{Pr}(\text { default })}-1\right)
$$

$\operatorname{Pr}($ default $) \uparrow \rightarrow q \downarrow \rightarrow r-r^{*} \uparrow$

Empirical Facts

- Time series for GDP, consumption, spreads in Argentina
- Argentina defaults in December 2001
- Interest rate spread soars in low income periods

Empirical Facts

- Business cycle statistics for Argentina
- Compensation is more volatile than output
- Interest rate spread is countercyclical

Model Elements

- DSGE model, small open economy
- Endogenous default risk from limited commitment problem
- Asset incompleteness:
- reflects actual credit markets, contracts at noncontingent r
- deliver countercyclical default risk

Model Setting

- Foreign creditors: risk neutral, require r return
- Households: identical and risk averse

$$
\mathbb{E}_{0} \sum_{0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

Income: Markov process y with a transition $\mathrm{fn} f\left(y^{\prime}, y\right)$, tradable goods

- Government: access to international financial market
- buy/issue one period bonds B^{\prime} at price $q\left(B^{\prime}, y\right)$
- if repay next period, resource constraint is

$$
c=y+B-q\left(B^{\prime}, y\right) B^{\prime}
$$

- if default next period, government remain in financial autarky with prob θ

$$
c=y^{d e f}=h(y)<y
$$

Timing

- Govn't starts with initial asset B, observe income shock y
- Govn't decides repay or default its debt
- If repays, taking as given bond price schedule $q\left(B^{\prime}, y\right)$, chooses B^{\prime}
- Creditors taking q as given choose B^{\prime}
- Consumption c takes place

Foreign Creditor Problem

- Price the bond contract to break even in expected value

$$
q\left(B^{\prime}, y\right)=\frac{1-\delta\left(B^{\prime}, y\right)}{1+r}
$$

$\delta\left(B^{\prime}, y\right)$ is probability of default

- default decision is made tomorrow, depends on B^{\prime}, y^{\prime}
- B^{\prime} is chosen today, y^{\prime} can be forecast by y
- Govn't also understands this price schedule

Govn't Problem

- Before making default decision, the government value function is

$$
v^{0}(B, y)=\max _{c, d}\left\{v^{c}(B, y), v^{d}(y)\right\}
$$

- Value of default

$$
v^{d}(y)=u\left(y^{d e f}\right)+\beta \int_{y^{\prime}}\left[\theta v^{0}\left(0, y^{\prime}\right)+(1-\theta) v^{d}\left(y^{\prime}\right)\right] f\left(y^{\prime}, y\right) d y^{\prime}
$$

- Value of commit

$$
v^{c}(B, y)=\max _{B^{\prime}}[u\left(y-q\left(B^{\prime}, y\right) B^{\prime}+B\right)+\beta \underbrace{\int_{y^{\prime}} v^{0}\left(B^{\prime}, y^{\prime}\right) f\left(y^{\prime}, y\right) d y^{\prime}}_{\text {incorporate option to defult }}]
$$

- Default or commit is a period-by-period decision
- No Ponzi scheme $B^{\prime} \geq-Z$, not binding in eqm

Govn't Policy

- Repay/Commit set

$$
\left.A(B)=\left\{y \in Y: v^{c}(B, y)\right) \geq v^{d}(y)\right\}
$$

- Default set

$$
\left.D(B)=\left\{y \in Y: v^{c}(B, y)\right)<v^{d}(y)\right\}
$$

- Default probability

$$
\delta\left(B^{\prime}, y\right)=\int_{D\left(B^{\prime}\right)} f\left(y^{\prime}, y\right) d y^{\prime}
$$

- More debt raised $B^{\prime} \downarrow$
- $v^{c}\left(B^{\prime}, y^{\prime}\right) \downarrow \rightarrow D\left(B^{\prime}\right) \uparrow \rightarrow \delta\left(B^{\prime}, y\right) \uparrow \rightarrow q \downarrow$

Recursive Equilibrium

- Defined as a set of policy functions

1 consumption $c(s)$
2 govn't asset holding $B^{\prime}(s)$, repayment sets $A(B)$, default sets $D(B)$
3 price function for bonds $q\left(B^{\prime}, y\right)$

- such that following conditions are satisfied
- Taking as given govn't policies, $\mathrm{HH} c(s)$ satisfies resource constraint
- Taking as given $q\left(B^{\prime}, y\right)$, gov't $B^{\prime}(S), A(B), D(B)$ satisfies optimization
- $q\left(B^{\prime}, y\right)$ reflects govn't default prob, consistent with creditor expected return

Default Incentive

- Default incentives are stronger the lower the endowment
- For all $y_{1} \leq y_{2}$, if $y_{2} \in D(B)$, then $y_{1} \in D(B)$
- Net repayment is more costly when income is low due to higher MU

Total Resource Borrowed

- No further lending

$$
B=\sup \{B: D(B)=Y\}
$$

- No default risk

$$
B=\inf \{B: D(B)=\emptyset\}
$$

- The relevant region for "risky borrowing" is $B^{\prime} \in\left(B^{*}, B\right)$

Quantitative Results

- B is reported as ratio of mean output
- Lager debt induces higher interest rates
- Endogenous countercyclical interest rate schedule \rightarrow more volatile consumption
- Problematic: cannot support high enough debt, steep $q\left(B^{\prime}, y\right)$ curve

Quantitative Results

- Low income: borrow less, save less
- Borrower is more often at constraint in recession

Part II: Default Risk and Maturity Structure

- Arellano and Ramanarayanan, 2012
- A framework to introduce long-term debt

Several Questions about debt maturity

- Short-term debt
- benefit: larger incentive to repay (less sensitive price)
- cost: roll-over risk
- Long-term debt
- benefit: hedge against future fluctuations in spreads
- cost: higher default risk, longer time to exercise default (sensitive price)
- More short-term debt issued when interest rate spread rise (bad time)
- Spread on short-term debt rises more than long-term debt

Some Basic Definitions

- Short-term debt : t obtain $q, t+1$ repay 1
- Long-term zero coupon debt maturing in n years: t obtain $q, t+n$ repay 1

$$
q=\frac{1}{\left(1+r_{t, i}\right)^{n}}=\left(1+r_{t, i}\right)^{-n} \sim\left(\exp r_{t, i}\right)^{-n}=\exp \left(-n r_{t, i}\right)
$$

- Long-term debt paying fixed coupon c in $n_{1}, n_{2}, \ldots, n_{\jmath}$ year, $t+n$ repay 1

$$
q=\sum_{j=1}^{J} \exp \left(-n_{j} r_{t, i}^{m_{j}}\right) c+\exp \left(-n_{J} r_{t, i}^{n_{j}}\right)
$$

- Duration

$$
d_{t, i}(c)=\frac{1}{q_{t, i(c)}}\left[\sum_{j=1}^{J} \exp \left(-n_{j} r_{t, i}^{m_{j}}\right) c n_{j}+\exp \left(-n_{J} r_{t, i}^{n_{J}}\right) n_{J}\right]
$$

- Perpetual debt: t obtain $q, t+1$ pay $1, t+2$ pay $\delta, \ldots, t+n$ pay $\delta^{n-1}(\delta=0$ short-term debt $)$

Empirical Facts

- Low spreads (good times): gap(spread of LT debt-spread of ST debt) is large
- High spreads (bad times): gap is small even reversed

Empirical Facts

- Regression of average duration of new issuances on spreads
- Larger default premium (long over short debt) \rightarrow longer duration

Model Setting

- Foreign creditors: risk neutral, require r return
- Households: identical and risk averse

$$
\mathbb{E}_{0} \sum_{0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

Output: Markov process y with a transition function $f\left(y^{\prime}, y\right)$, tradable

- Govn't: issue/buy short and long term bond on international credit market
- short-term bond: t receive $q_{S_{t}} b_{S t+1}, t+1$ repay $b_{S_{t+1}}$
- long-term bond: perpetuity contract with coupon that decay geometrically at δ

Long-term Debt

$$
\begin{array}{cccccc}
t-2 & t-1 & t & t+1 & t+2 & \cdots \\
q_{L t-2} \ell_{t-2} & \ell_{t-2} & \delta \ell_{t-2} & \delta^{2} \ell_{t-2} & \delta^{3} \ell_{t-2} & \cdots \\
& q_{L t-1} \ell_{t-1} & \ell_{t-1} & \delta \ell_{t-1} & \delta^{2} \ell_{t-1} & \cdots \\
& & q_{L t} \ell_{t} & \ell_{t} & \delta \ell_{t} & \cdots
\end{array}
$$

- Outstanding stock of long-term debt at t

$$
\begin{gathered}
b_{L t}=b_{L 0}+\ell_{t-1}+\delta \ell_{t-2}+\delta^{2} \ell_{t-3}+\ldots+\delta^{t} \ell_{0}=\sum_{j=1}^{t} \delta^{j-1} \ell_{t-j}+b_{L 0} \\
b_{L t+1}=\delta b_{L, t}+\ell_{t}
\end{gathered}
$$

- Only one kind of long-term debt, duration controlled by δ
- No seniority when repay, if default all debt erased
- Vintage does not matter, only stock matters

Model Setting (Cont'd)

- Household resource constraint conditional on not defaulting

$$
c_{t}=y_{t}-b_{S, t}-b_{L, t}+q_{S, t} b_{S, t+1}+q_{L, t} \ell_{t}
$$

$q_{S, t}, q_{L, t}$ are quoted for each pair of ($b_{S t+1}, b_{L t+1}$)

- Household resource constraint conditional on defaulting

$$
c_{t}=y_{t}^{\text {def }}= \begin{cases}y_{t} & \text { if } y_{t} \leq(1-\lambda) y \\ (1-\lambda) y & \text { if } y_{t}>(1-\lambda) y\end{cases}
$$

Govn't Problem

- Before making default decision, the government value function is

$$
v^{0}\left(b_{S}, b_{L}, y\right)=\max _{c, d}\left\{v^{c}\left(b_{S}, b_{L}, y\right), v^{d}(y)\right\}
$$

- Value of default

$$
v^{d}(y)=u\left(y^{d e f}\right)+\beta \int_{y^{\prime}}\left[\theta v^{0}\left(0,0, y^{\prime}\right)+(1-\theta) v^{d}\left(y^{\prime}\right)\right] f\left(y^{\prime}, y\right) d y^{\prime}
$$

- Value of commit

$$
v^{c}\left(b_{S}, b_{L}, y\right)=\max _{b_{S}^{\prime}, b_{L}^{\prime}, \ell, c}\left[u\left(y-q\left(B^{\prime}, y\right) B^{\prime}+B\right)+\beta \int_{y^{\prime}} v^{0}\left(b_{S}^{\prime}, b_{L}^{\prime}, y^{\prime}\right) f\left(y^{\prime}, y\right.\right.
$$

- Resource constraint

$$
c_{t}=y_{t}-b_{S, t}-b_{L, t}+q_{S, t}\left(b_{S}^{\prime}, b_{L}^{\prime}, y^{\prime}\right) b_{S, t+1}+q_{L, t}\left(b_{S}^{\prime}, b_{L}^{\prime}, y^{\prime}\right) \ell_{t}
$$

- Law of motion of long-term bonds

$$
b_{L}^{\prime}=\delta b_{L}+\ell
$$

Govn't Policy

- Repay/Commit set

$$
\left.R\left(b_{S}, b_{L}\right)=\left\{y \in Y: v^{c}\left(b_{S}, b_{L}, y\right)\right) \geq v^{d}(y)\right\}
$$

- Default set

$$
\left.D\left(b_{S}, b_{L}\right)=\left\{y \in Y: v^{c}\left(b_{S}, b_{L}, y\right)\right)<v^{d}(y)\right\}
$$

- When borrower does not default, new debt issuance rule is

$$
\begin{aligned}
b_{S}^{\prime} & =b_{S}\left(b_{S}, b_{L}, y\right) \\
b_{L}^{\prime} & =b_{L}\left(b_{S}, b_{L}, y\right)
\end{aligned}
$$

Bond Prices

- Short-term debt

$$
q_{S}\left(b_{S}^{\prime}, b_{L}^{\prime}, y\right)=\frac{1}{1+r^{*}} \int_{R\left(b_{s}^{\prime}, b_{L}^{\prime}\right)} f\left(y, y^{\prime}\right) d y^{\prime}
$$

price only depends on next period repay probability

- Long-term debt:

$$
q_{L}\left(b_{S}^{\prime}, b_{L}^{\prime}, y\right)=\frac{1}{1+r^{*}} \int_{R\left(b_{s}^{\prime}, b_{L}^{\prime}\right)}\left[1+\delta q_{L}^{\prime}\left(b_{S}^{\prime \prime}, b_{L}^{\prime \prime}, y^{\prime}\right)\right] f\left(y, y^{\prime}\right) d y^{\prime}
$$

- decompose: price $=t+1$ payoff +PV (coupon from $t+1$ on)
- recursive structure of debt: PV (coupon) $=$ price of new debt at $t+1$
- more sensitive to y : additional hedging effect from q_{L}^{\prime} as $\operatorname{corr}\left(q_{L}^{\prime}, c^{\prime}\right) \geq 0$
- deep reason: long-term debt has longer default option period

Optimal Maturity Structure

- First order necessary conditions:

$$
\begin{aligned}
& {\left[b_{S}^{\prime}\right]: u^{\prime}(c)\left[q_{S}+\frac{\partial q_{S}}{\partial b_{S}^{\prime}} b_{S}^{\prime}+\frac{\partial q_{L}}{\partial b_{S}^{\prime}}\left(b_{L}^{\prime}-\delta b_{L}\right)\right]=\beta \int_{R^{\prime}} u^{\prime}\left(c^{\prime}\right) f\left(y, y^{\prime}\right) d y^{\prime}} \\
& {\left[b_{L}^{\prime}\right]: u^{\prime}(c)\left[q_{L}+\frac{\partial q_{S}}{\partial b_{L}^{\prime}} b_{S}^{\prime}+\frac{\partial q_{L}}{\partial b_{L}^{\prime}}\left(b_{L}^{\prime}-\delta b_{L}\right)\right]=\beta \int_{R^{\prime}}\left(1+\delta q_{L}^{\prime}\right) u^{\prime}\left(c^{\prime}\right) f\left(y, y^{\prime}\right) d .}
\end{aligned}
$$

- marginal gain in util today $=$ marginal reduction in util repay
- Larger debt quantities, lower incentive to repay, $\frac{\partial q_{m}}{\partial b_{n}^{\prime}} \leq 0, m, n \in S, L$

Optimal Maturity Structure (Cont'd)

- First order necessary conditions:

$$
\begin{aligned}
& {\left[b_{S}^{\prime}\right]: u^{\prime}(c)\left[1+\frac{\partial q_{S}}{\partial b_{S}^{\prime}} \frac{b_{S}^{\prime}}{q_{S}}+\frac{\partial q_{L}}{\partial b_{S}^{\prime}} \frac{\left(b_{L}^{\prime}-\delta b_{L}\right)}{q_{S}}\right]=\beta\left(1+r^{*}\right) \mathbb{E}\left[u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right]} \\
& {\left[b_{L}^{\prime}\right]: u^{\prime}(c)\left[1+\frac{\partial q_{S}}{\partial b_{L}^{\prime}} \frac{b_{S}^{\prime}}{q_{L}}+\frac{\partial q_{L}\left(b_{L}^{\prime}-\delta b_{L}\right)}{\partial b_{L}^{\prime}} \frac{q_{L}}{\beta}\right]=\beta\left(1+r^{*}\right) \mathbb{E}\left[u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right] \underbrace{\frac{\mathbb{E}\left[\left(1+\delta q^{\prime}\right) u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right]}{\left.\mathbb{E}\left(1+\delta q_{L}^{\prime}\right) \mid R^{\prime}\right] \mathbb{E}\left[u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right]}}_{\text {hedging benefit, corr }\left(u^{\prime}\left(c^{\prime}\right), q_{L}^{\prime}\right)<0}}
\end{aligned}
$$

- Long term debt
- price is more sensitive to income shock
- hedging effect is why borrowers want to issue long term debt
- pro: in good times, long-term debt price rise fast
- con: in bad times when total debt increase, long-term debt price drops rapidly

Optimal Maturity Structure (Cont'd)

- Hedging benefit:

$$
\frac{\mathbb{E}\left[\left(1+\delta q_{L}^{\prime}\right) u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right]}{\mathbb{E}\left[\left(1+\delta q_{L}^{\prime}\right) \mid R^{\prime}\right] \mathbb{E}\left[u^{\prime}\left(c^{\prime}\right) \mid R^{\prime}\right]}
$$

- Relative incentive benefit:

$$
\frac{1+\frac{\partial q_{S}}{\partial b_{L}^{\prime}} \frac{b_{S}^{\prime}}{q_{L}}+\frac{\partial q_{L}}{\partial b_{L}^{\prime}} \frac{\left.b_{L}^{\prime}-\delta b_{L}\right)}{q_{L}}}{1+\frac{\partial q_{S}^{S}}{\partial b_{S}^{\prime}}} \frac{\partial \frac{\partial q_{L}^{\prime}}{q_{S}}}{\partial b_{S}^{\prime}} \frac{\left(b_{L}^{\prime}-\delta b_{L}\right)}{q_{S}}
$$

- Good times:
- hedging benefit is dominating, issue more long-term debt
- Bad times:
- incentive benefit is dominating, issue more short-term debt

Bond Price Functions

- As debt increase, debt price drops
- Price of long term debt is more sensitive

Debt Policies and Repay Incentives

- Bad times: issue more b_{s}^{\prime}, good times: issue more b_{L}^{\prime}
- Repay incentives: short-term > long-term

Takeaways

- Default is more likely in recession, countercyclical spreads
- Maturity shorten in recession
- Short-term debt is for incentivise repayments
- Long-term debt is for hedging fluctuation of interest rate spreads

