Financial Origins of Uncertainty¹

Ding Dong¹, Zheng Liu², Pengfei Wang³

¹Hong Kong University of Science and Technology

²Federal Reserve Bank of San Francisco

³Peking University HSBC Business School

June 2023, HKUST

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

- Uncertainty rises in recession
 - Bloom et al.(2009, 2018), Leduc and Liu (2016) etc.
- Open question: uncertainty is
 - an exogenous source of business cycle fluctuations?
 - an endogenous response to economic fundamentals?
- Recent evidence: Ludvigson, Ma and Ng (2021) etc.
 - countercyclical macroeconomic uncertainty is often an endogenous response to fundamental shocks.
- This paper studies the sources of endogenous uncertainty
 - fundamental shocks \rightarrow ? \rightarrow endogenous uncertainty

- ullet search and matching o endogenous uncertainty
 - Bernstein et al.(2021)
- ullet nominal interest rate bound o endogenous uncertainty
 - Plante et al. (2018)
- ullet asymmetric hiring rules o endogenous uncertainty
 - Ilut et al.(2018)
- fluctuations in real activity → information production → endogenous uncertainty
 - Fajgelbaum et al.(2017), Benhabib, Liu and Wang (2016,2019), Straub and Ulbricht (2023)

This paper

- Stylized fact:
 - uncertainty is negatively correlated with macro indicators on average
 - (new) ... more negative in periods with greater financial stress
- A theory of financial constraints and state-dependent uncertainty
 - ullet fundamental shocks o credit friction o endogenous uncertainty
- Key mechanism: procyclical leverage
 - fundamental shocks $\downarrow \to LTV$ (not just V) $\downarrow \to$ amplification $\uparrow \to$ uncertainty (forecast error) \uparrow
- Consistent with observation:
 - 1. persistently depressed production
 - 2. large credit spreads
 - 3. a rise in default rates
 - 4. an increased cross-sectional dispersion of firm sales
 - 5. the contemporaneous increase in measured aggregate uncertainty

1. Define a measure for uncertainty about output growth (following Jurado et al. (2015) and Ludvigson et al. (2021))

$$U_{t,t+1}^{y} = \frac{1}{sd(\Delta y)} \sqrt{E_t \{ [\Delta y_{t+1} - E_t(\Delta y_{t+1})]^2 \}}$$
 (1)

where $y_t = log(Y_t)$ and $\Delta y_t = y_t - y_{t-1}$, and we normalize by the standard deviation of output growth (Δy) in the ergodic distribution.

- 2. Measure uncertainty about consumption, labor and credit in similar way
- 3. Construct a 'CORE' real uncertainty index as simple average of four individual uncertainty series.

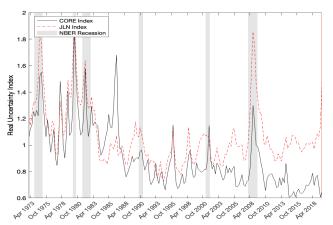


Figure: Real Uncertainty Series. Shaded grey bars are NBER recessions. ($corr(U_{t,t+1}^y,\Delta y_t)=-0.36$).

Role of Financial Factors

Table 1: Cyclicality of Uncertainty in Different Financial Regimes

	JLN	CORE	Output	Consum.	Hour	Credit
Average	-0.4847	-0.2359	-0.3280	-0.1568	-0.1043	-0.2733
Panel A: Financial Regime based on ANFCI						
Loose	-0.0254	0.0979	0.1480	-0.0191	0.2278	0.0529
Tight	-0.6725	-0.4199	-0.4731	-0.2172	-0.3012	-0.4134
Panel B: Financial Regime based on Financial Uncertainty Index						
Loose	-0.0742	0.1361	-0.1237	0.2039	0.1153	0.0043
Tight	-0.5422	-0.2827	-0.3416	-0.1704	-0.1767	-0.3091

- when financial condition is loose, real uncertainty is uncorrelated with growth measures;
- when financial uncertainty is tight, real uncertainty is (strongly)
 negatively correlated with economic growth (i.e. countercyclical).

Role of Financial Factors

Table 1A: Cyclicality of Uncertainty in Different Financial Regimes (robustness)

	JLN	CORE	Output	Consum.	Hour	Credit	
Average	-0.4847	-0.2359	-0.3280	-0.1568	-0.1043	-0.2733	
Panel A: Credit spread: Baa							
Low	-0.2944	-0.0997	-0.1533	-0.1404	0.0643	-0.0708	
High	-0.5560	-0.3126	-0.4018	-0.1882	-0.2131	-0.3592	
Panel B: Credit spread index: GZ							
Low	-0.3474	-0.2617	-0.3071	-0.2653	-0.0897	-0.1170	
High	-0.6719	-0.3475	-0.5213	-0.1591	-0.3433	-0.3813	
Panel C: Excess bond premium: GZ							
Low	-0.3452	-0.1502	-0.3015	-0.1125	-0.0514	-0.0610	
High	-0.5205	-0.2137	-0.3173	-0.0821	-0.1318	-0.3331	

Theory: Preview

- RBC model with hetero- firm and endogenous default risk
 - firm s.t. working capital constraint
 - productive firm constrained by default risk limit
- First-moment shock generates endogenous response in uncertainty
 - TFP/Credit shock o reallocation channel o endogenous TFP o endogenous uncertainty
 - TFP/Credit shock \rightarrow default risk \rightarrow financial stress \rightarrow endogenous uncertainty
 - Uncertainty shock \to reallocation channel \to endogenous TFP \to synchronized recession

Timeline

- 1. At the beginning of each period, aggregate productivity shocks (A_t) are realized.
- Firms choose the size of loan offered by risk-neutral, competitive creditors
- 3. Firms observe the i.i.d. idiosyncratic productivity shock (ε_{jt}) and choose the optimal scale of production.
- 4. After production, idiosyncratic liquidity shocks (ϕ_{jt}) are realized, and firms may choose to either repay the debt or to default and quit the market.
- 5. Each exiting firm is replaced by a new entrant, after paying due operation cost. (aggregate liquidity cost in fixed)

Bellman equation

$$V_{t}(\varepsilon_{jt}, \phi_{jt}) = \max_{b_{t}, k_{jt}, n_{jt}} \underbrace{I_{t}}_{loan} - \underbrace{(W_{t}n_{jt} + R_{t}k_{jt})}_{cost} + \underbrace{A_{t}\varepsilon_{jt}k_{jt}^{\alpha}n_{jt}^{1-\alpha}}_{revenue}$$

$$+ \underbrace{\max\{0, E_{t}M_{t+1}V_{t+1} - b_{t} - \phi_{jt}\}}_{continuation value}$$

subject to a working capital constraint

$$W_t n_{jt} + R_t k_{jt} \le \int_{\phi_{jt} \in \Phi^n} b_t dF(\phi) \equiv I_t$$

 ϕ_{jt} : idiosyncratic operation cost shock (i.i.d.) with C.D.F $G(\phi)$; Φ^n : set of non-default states.

ullet Cut-off in liquidity (ϕ_{jt}) : above which firm defaults, given $\{b_t\}$

$$\phi_t^* = E_t M_{t+1} V_{t+1} - b_t \equiv q_t - b_t \tag{2}$$

 $(\varepsilon_{jt}$ is i.i.d. shock: the cut-off is not firm-specific.)

Risk-neutral and competitive lenders lend and break-even

$$I_t = G(\phi_t^*)b_t$$

Spread:

$$SPR_t = 1 - G(\phi_t^*)$$

• Cut-off in productivity (ϵ_{it}) : above which firm produces

$$\varepsilon_t^* = \frac{1}{A_t} \left(\frac{R_t}{\alpha}\right)^{\alpha} \left(\frac{W_t}{1-\alpha}\right)^{1-\alpha} \tag{3}$$

Value of a firm is

$$\bar{V}_t(A_t, \varepsilon_{jt}) = \begin{cases} & (\frac{\varepsilon_{jt}}{\varepsilon_t^*} - 1)(1 - SPR_t)b_t + \int^{\phi_t^*} [\phi_t^* - \phi] dG(\phi), & \varepsilon_{jt} \ge \varepsilon_t^* \\ & (1 - SPR_t)b_t + \int^{\phi_t^*} [\phi_t^* - \phi] dG(\phi), & (inaction) \end{cases}$$

$$(4)$$

Ex ante expected value of firms:

$$\tilde{V}(A_t) = \max_{b_t} \int_{\mathcal{E}_t^*} (\frac{\varepsilon_{jt}}{\varepsilon_t^*} - 1) dF(\varepsilon) (1 - SPR_t) b_t + \int^{\phi_t^*} (q_t - \phi) dG(\phi)$$

F.O.C. w.r.t b_t :

$$\int_{\varepsilon_t^*} (\frac{\varepsilon}{\varepsilon_t^*} - 1) dF(\varepsilon) (1 - SPR_t) = \left[\int_{\varepsilon_t^*} (\frac{\varepsilon}{\varepsilon_t^*} - 1) dF(\varepsilon) + 1 \right] g(\phi_t^*) b_t \quad (5)$$

(intuition: benefit and cost of raising additional debt are equalized)

Entrepreneurs

The representative entrepreneur

1. owns all the firms,

$$\mathbf{E} \sum_{t=0}^{\infty} \Phi_t(\beta^e)^t \log C_t^e \tag{6}$$

 Φ_t : intertemporal preference shock.

2. does not accumulate capital,

$$C_t^e = D_t \tag{7}$$

where D_t is aggregate flow profit of firms

$$D_{t} = \left[\int_{\varepsilon_{t}^{*}} \left(\frac{\varepsilon}{\varepsilon_{t}^{*}} - 1 \right) dF(\varepsilon) \right] (1 - SPR_{t}) b_{t}$$
 (8)

3. implied stochastic discount factor (SDF):

$$M_{t+1} = \varphi_{t+1} \beta^e \frac{D_t}{D_{t+1}},\tag{9}$$

where
$$\phi_{t+1} = \frac{\phi_{t+1}}{\phi_t}$$
: SDF shock

Household

Household's decision rules are characterized by the following equations:

$$\psi N_t^{\gamma} = \frac{1}{C_t^h} W_t \tag{10}$$

$$R_t = \delta_0 u_t^{\eta} \tag{11}$$

$$1 = Q_{t} \left(1 - \frac{\Omega_{k}}{2} \left(\frac{I_{t}}{I_{t-1}} - 1 \right)^{2} - \Omega_{k} \left(\frac{I_{t}}{I_{t-1}} - 1 \right) \frac{I_{t}}{I_{t-1}} \right) + \beta E_{t} \frac{C_{t}^{h}}{C_{t+1}^{h}} Q_{t+1} \Omega_{k} \left(\frac{I_{t+1}}{I_{t}} - 1 \right) \left(\frac{I_{t+1}}{I_{t}} \right)^{2}$$
(12)

where Q_t is Tobin's q that measures return to capital and it satisfies

$$Q_{t} = \beta E_{t} \frac{C_{t}^{h}}{C_{t+1}^{h}} \left(R_{t+1} u_{t+1} + (1 - \delta_{t+1}) Q_{t+1} \right)$$
 (13)

1. Labor

$$W_t N_t = (1 - \alpha)(1 - SPR_t)b_t[1 - F(\varepsilon_t^*)]$$
(14)

2. Capital

$$R_t u_t K_t = \alpha (1 - SPR_t) b_t [1 - F(\varepsilon_t^*)]$$
 (15)

3. Output

$$Y_{t} = \int_{\varepsilon_{t}^{*}} \frac{\varepsilon}{\varepsilon_{t}^{*}} dF(\varepsilon) (1 - SPR_{t}) b_{t}$$
 (16)

4. Goods

$$Y_{t} = C_{t}^{e} + C_{t}^{h} + I_{t} + E_{t}(\phi_{jt})$$
(17)

Calibration

	Parameter Description	Value	Target/ Reference
-0	DF: Household		9 /
β		0.99	Risk-free interest rate
eta^e	DF: Entrepreneur	0.98	Excess equity return
γ	Inverse Frisch elasticity	0	Hansen (1985)
ψ	Utility weight on leisure	3.00	Hours $= 1/3$ of time endowment
α	Capital share	0.35	Labor income share of 0.65
$\delta_0/(1+\eta)$	Steady state depreciation	0.025	Annual depreciation rate of 10%
η	Elas. of DP to utilization	0.40	Wen (1998); Liu and Wang (2014)
Ω_k	Inv. adjustment cost	0.71	Estimated
ν	Shape parameter of $F()$	5.7	Avg. economic profit
κ	Shape parameter of $G()$	2.8	Debt to quarterly GDP ratio
$ar{\phi}/Y$	Fixed cost to output	0.12	Corporate Bond Spread
ρ_a	Persistence: TFP	0.95	Cooley (1995)
σ_{a}	Volatility: TFP	0.0075	Cooley (1995)
$ ho_{arphi}$	Persistence: SDF	0.9741	Albuquerque (2016)
σ_{φ}	Volatility: SDF	0.0017	Albuquerque (2016)

Impact of TFP Shocks

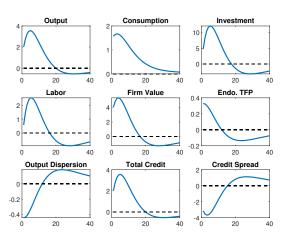


Figure: IRFs to TFP Shock

Impact of SDF Shocks

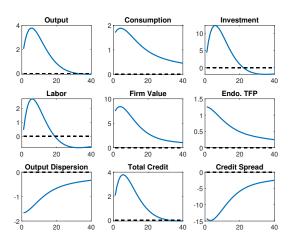


Figure: IRFs to SDF Shock

State-dependent effects and procyclical leverage

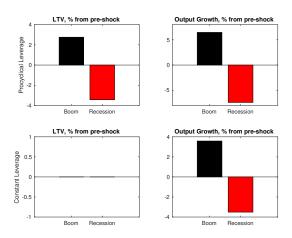


Figure: Pro-cyclical leverage and state-dependent effects

Endogenous Uncertainty

Table: Corr. b/w Output Growth and Endogenous Uncertainty (Simulation)

	$U_{t,t+1}^{CORE}$	$U_{t,t+1}^{y}$	$U_{t,t+1}^c$	$U_{t,t+1}^n$	$U_{t,t+1}^b$	
Benchmark	-0.3234	-0.3152	-0.1993	-0.4638	-0.3152	
		(0.0385)	(0.0410)	(0.0371)	(0.0385)	
Counterfactual: Loose financial condition with lower $ar{\phi}$						
Loose	-0.2077	-0.1566	-0.0831	-0.4344	-0.1566	
		(0.0385)	(0.0386)	(0.0341)	(0.0385)	

- Counterfactual economy: lower $\bar{\phi}$ (half of calibrated value)
 - Steady-state credit spread is lower (i.e. less financial friction)

Financial Uncertainty Shock

- Ludvigson et al.(2021): financial uncertainty shocks are driving force of declines in real activity.
 - financial uncertainty shocks: 'second moment' variable that could arise because of expected volatility in financial markets such as fear of bankruptcy
- Our model is consistent with such observation by showing the effects of a second moment shock on liquidity risk.
 - assume that κ is time-varying and follows an AR(1) process in log:

$$\log(\kappa_t) = (1 - \rho_f)\log(\kappa) + \rho_f\log(\kappa_{t-1}) + \sigma_f \varepsilon_t^F, \quad \varepsilon_t^f \sim N(0, 1) \tag{18}$$

Financial Uncertainty Shock

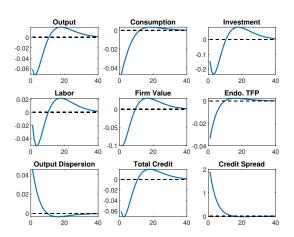


Figure: IRFs to Financial Uncertainty Shock

Conclusion

- 1. Financial frictions give rise to countercyclical uncertainty.
- 2. In a RBC model with heterogeneous firms,
 - Default risks limit the access of productive firms to external credit.
 - Negative first-moment shock reduces firms' borrowing capacity and production disproportionately more than a positive shock
 - Asymmetric (or state-dependent) responses of aggregate variables imply a larger conditional variance of forecast errors (i.e. countercyclical uncertainty)
- 3. Uncertainty is less negatively correlated with aggregate output growth in periods with less financial stress.
- 4. Financial uncertainty shock generates synchronized recession
 - Key: reallocation channel stemming from financial frictions.

